
Lecture #8: Introduction to Nondeterministic Computation

Proofs of Claims

This document includes proofs of the nontrivial claims, concerning nondeterministic computa-

tion, that were given in the notes for Lecture #8. This is for interest only , since all the proofs,

given here, are also sketched in the lecture notes.

A Useful Lemma

The following lemma will be used repeatedly when proving this, and later results — because

many of the definitions used in this course imply that the number of steps used for some

computation is “in O(f(n))”, rather than “at most f(n)”, when the input has length n.

Lemma. Let f, g : N → N such that g ∈ O(f). Then there exist a positive constant c1 and a

nonnegative constant c0 such that

g(n) ≤ c1f(n) + c0

for all n ∈ N.

Proof. Let f, g : N → N such that g ∈ O(f). Then it follows, by the definition of “O(f)”, that

there exists a constant N0 and a positive constant c such that

g(n) ≤ cf(n)

for all n ∈ N such that n ≥ N0.

Now let c1 = c and let

c0 = max


 max

m∈N
0≤m≤N0−1

(g(m) − cf(m)) , 0


 .

1

Then c1 is a positive constant, since it is given that c is, and c0 is a nonnegative constant by

the above definition. Now, if 0 ≤ N0 − 1 then

g(n) = cf(n) + (g(n)− cf(n))

= c1f(n) + (g(n)− cf(n)) (since c1 = c)

≤ c1f(n) + c0 (by the definition of c0, since n ∈ N and 0 ≤ n ≤ N0 − 1).

On the other hand, if n ∈ N and n ≥ N0 then

g(n) ≤ cf(n) (since n ≥ N0, as noted above)

= c1f(n) (since c1 = c)

≤ c1f(n) + c0 (since c0 ≥ 0).

Thus g(n) ≤ c1f(n) + c0 for all n ∈ N, as claimed.

Proof of Claim #1

As the following result indicates, the two notions of “nondeterministic time” complexity classes

are equivalent when the functions used to bound running time are well behaved:

Claim 1. Let f : N → N be a time-constructible function such that f(n) ∈ Ω(n). Then

NTIME(f) = NTIMEV(f).

Proof. Let f : N → N be a time-constructible function such that f(n) ∈ Ω(n). Consider a

language L ⊆ Σ⋆ for some alphabet Σ.

• Suppose, first, L ∈ NTIME(f).

– Then there exists a nondeterministic Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

that decides L using time in O(f(n)). It follows, by the above lemma, that there

exist a positive constant c1 and a nonnegative constant c0 such that, if M is ex-

ecuted on a string ω ∈ Σ⋆ then the depth of the computation tree, modelling this

computation, is at most c1f(|ω|) + c0.

– Let k be the number of tapes that M has, so that k is a positive integer.

– Since M is a fixed Turing machine its transition function is a fixed function, and

there exists a positive constant U ∈ N such that, for every state q ∈ Q and for all

symbols σ1, σ2, . . . , σk ∈ Γ, δ(q, σ1, σ2, . . . , σk) is a subset of Q× (Γ× {L,R,S})k

with size at most U .

2

– Ordering the states in Q and the symbols in the tape alphabet Γ (as is needed

when describing an encoding of M as a string) one can also order the elements

of Q× (Γ× {L,R,S})k included in the value of each transition function. That is, for

all q ∈ Q and σ1, σ2, . . . , σk ∈ Γ, one can write

δ(q, σ1, σ2, . . . , σk) = {χ0, χ1, χ2, . . . , χm−1}

where m = |δ(q, σ1, σ2, . . . , σk)|, and where χi ∈ Q× (Γ× {L,R,S})k for 0 ≤ i ≤
m − 1. Indeed, this can be done in such a way that χi can be determined from q,

σ1, σ2, . . . , σk, and i.1

– Now let

ΣC = {τ0, τ1, . . . , τU−1}

be some alphabet with size U , for U as given above, whose elements are also

ordered in some way.

– For each string ω ∈ Σ⋆ with length n ∈ N, every string ν ∈ Σ⋆
C , such that |ν| ≤

c1f(n) + c0, can now be thought of as specifying some path, down from the root,

in the computation tree for the execution of M on input ω.

– With that noted, consider a deterministic Turing machine, with input alphabet Σ̂ =
Σ ∪ ΣC ∪ {#}, that implements the algorithm shown in Figure 1 on page 4. Recall

that, since the function f : N → N, is time-constructible, there exists a deterministic

Turing machine Mf (that computes functions) that takes the unary representation

1n of a natural number n ∈ N and computes the binary representation of f(n) as

output, using O(f(n)) steps in the worst case. This is the Turing machine (with ℓ
tapes) that is applied in step 5 of this algorithm.

– A string µ ∈ Σ̂⋆ is only accepted by this algorithm if it reaches and passes the

test, leading to acceptance, in the step at line 8. Since steps 1 and 2 must have

been carried out before this, with the test at line 2 leading to rejection having failed,

an examination of the details of steps 2–8 should suffice to confirm that µ is only

accepted if µ = ω#ν for some string ω ∈ Σ⋆ and for some string ν ∈ Σ⋆
C . Further-

more, since

* the string on the third tape is the binary representation of c1f(n) + c0 at the

end of the fifth step, where n = |ω|,

* this counter’s value is decremented every time step 6 is executed without re-

jecting the input,

* a symbol on the first tape is examined during step 8, before the step at line 6
is reached again

1Since M is a fixed nondeterministic Turing machine, the finite control of the Turing machine M̂ that is being

described in this proof, can be used to take care of this. This is more of a concern when one is describing an

implementing a “universal nondeterministic Turing machine”, instead.

3

On input µ ∈ Σ⋆ . . .

1. While the symbol visible on the first tape is in Σ, copy this symbol onto the second tape

— except that the first of these symbols should be “marked” (with a symbol σ̇ used

instead of a symbol σ ∈ Γ), so the leftmost cell on the second tape can be located, later

on — and write 1 onto the third tape. Move right on the first, second and third tapes

without moving on other tapes or changing the contents of any tape except the second

and third.

2. If the symbol visible on the first tape is not # then reject . Otherwise move right on the

first tape without changing the contents of any tape or moving on any other tape.

3. While the symbol visible on the second tape is not a “marked” symbol (so that the tape

head is not, yet, at the leftmost cell on this tape, move left on both the second and third

tapes, without moving on other tapes or changing the contents of any tape.

4. Replace the “marked” symbol σ̇ on the second tape with the corresponding symbol

σ ∈ Γ without moving on other tapes or changing the contents of any other tape.

5. Carry out the execution of the deterministic Turing machine Mf , using tapes

3, 4, . . . , ℓ+2 as Mf ’s tapes. If Mf ’s output tape stores the binary representation of an

integer b, after this, replace this with the binary representation of c1b+ c0.

Note: If this step was reached then µ begins with a substring ω# for some string ω ∈ Σ⋆,

and the second tape now stores ω, with infinitely many blanks, to the right, and with the

tape head resting on the leftmost cell of the tape. If |ω| = n then the output tape

of Mf now stores the binary representation of c1f(n) + c0, with the tape head resting

on the leftmost cell of the tape as well. Suppose that the output tape is tape #h (so that

3 ≤ h ≤ ℓ+ 2).

6. Begin a simulation of M on input ω — using tape 2 and tapes #ℓ+3, ℓ+4, . . . , k+ ℓ+1
as M ’s tapes (so that tape 2 is M ’s input tape) by setting the current state of M to be

the start state, q0.

7. If tape #h now stores a binary representation of 0 then reject . Otherwise subtract one

from the value represented by this counter.

8. Suppose that M is currently in state q and that symbols σ1, σ2, . . . σk are visible on

tapes 2 and ℓ+ 3, ℓ + 4, . . . , k + ℓ+ 1 (so that these would be symbols visible on M ’s

tapes). Let m = |δ(q, σ1, σ2, . . . , σk)|.

Reject if the symbol visible on the first tape is not τi ∈ ΣC for some integer i such that

0 ≤ i ≤ m− 1. Otherwise move right on the first tape — and update M’s current state

and the contents and locations of the tape heads of tapes 2 and ℓ+3, ℓ+4, . . . , k+ℓ+1
by carrying out the transition χi corresponding to q, σ1, σ2, . . . σk, and i — accepting if

χi moves to state qaccept and a blank is visible on the first tape, rejecting if χi moves to

state qreject, and returning to step 7, otherwise.

Figure 1: Verification Algorithm for the Language L

4

* and, finally, since the input is rejected at step 6 if the counter’s value reaches

zero,

it can be argued that µ = ω#ν is only accepted if ω and ν are as described above

and, furthermore, |ν| ≤ c1f(|ω|) + c0.

Indeed, an examination of step 8 confirms that, for strings µ, ω and ν as above,

the string µ = ω#ν is accepted if and only if ν specifies a path, down from the

root in the computation tree for M and ω down to leaf, that leads to an accepting

configuration. Since this computation tree has depth at most c1f(|ω|) + c0, such a

path exists if and only if ω ∈ L.

– It remains only to confirm that a Turing machine implementing the algorithm in

Figure 1 halts when executed on any input string µ ∈ Σ⋆ and, furthermore, that

if the input string µ has the form ω#ν, where ω ∈ Σ⋆ and ν ∈ Σ⋆
C , then the number

of steps used by this Turing machine is in O(f(|ω|)).

* All strings µ ∈ Σ̂⋆ that do not begin with a sequence of symbols in Σ, followed

by #, are rejected during the first two steps of the algorithm shown in Figure 1

after O(|µ|) moves have been made. It therefore suffices to consider strings

µ = ω#ν where ω ∈ Σ⋆ and ν ∈ Σ̂⋆, when completing the proof.

* The first four steps of the algorithm shown in Figure 1 can be carried out at the

cost of sweeping right over the prefix ω ∈ Σ⋆ of the input string, sweeping back

to the left over this, and carrying out at most a constant number of additional

steps: O(|ω|) steps are used.

* It is given that the function f is time-constructible, and (inferred) that Mf can

be used to compute the binary representation of f(n), where n = |ω|, using

O(f(n)) moves. Since Mf is a fixed Turing machine this can be considered

to be a “component” of the Turing machine implementing the algorithm, so

that this Turing machine can carry out each each move of Mf using a single

move too. Thus the binary representation of f(n) — a string with length in

O(log f(n)) — can be produced using O(f(n)) moves.

Since c1 and c0 are positive integer constants the binary representation of

c1f(n) + c0 (another string with length in O(f(n))) can be obtained from the

binary representation of f(n) using O(log f(n)) additional moves.

It follows that step 5 of the algorithm in Figure 1 can be carried out using

O(f(n)) moves.

* It is not clear that step 6 requires a move, of its own, at all: It can probably

be carried out just by choosing which state to move to, after the execution of

step 5 ends.

* The total number of moves, needed for all executions of step 7, is essentially

the same as the total number of moves needed to decrement a binary counter,

whose initial value is c1(f(n))+c0, until the counter’s value reaches zero. Since

5

c1 and c0 are positive integer constants, the total number of moves needed is

in O(f(n)).

* Since M is a fixed nondeterministic Turing machine, its finite control can be

“hard wired” into the finite control of the Turing machine implementing the al-

gorithm, in such a way that each execution of the step at line 8 can be carried

out using a single move, too. Since this step is executed at most c1f(n) + c0
times, it follows that the total number of moves used for executions of this step

is in O(f(n)) too.

Since f(n) ∈ ω(n), n ∈ O(f(n)) and it follows by the above that the total number

of moves used, for an execution of this algorithm on an input string µ = ω#ν, when

ω ∈ Σ⋆ and ν ∈ Σ⋆
C , is in O(f(|ω|)). It follows that L ∈ NTIMEV(f).

Since L was arbitrarily chosen from NTIME(f), it now follows that NTIME(f) ⊆
NTIMEV(f).

• Suppose, next, that L ∈ NTIMEV(f).

– Then there exists a verifier for f using time at most f . That is, there exists a

“certificate alphabet” ΣC and a deterministic Turing machine

M = (Q, Σ̂,Γ, δ, q0, qaccept, qreject)

where Σ̂ = Σ ∪ ΣC ∪ {#}, # /∈ Σ ∪ ΣC , such that the following properties are

satisfied.

* M decides a language that is a subset of {µI#µC | µI ∈ Σ⋆ and µC ∈ Σ⋆
C},

so that M only accepts a string µ ∈ Σ̂⋆ if µ includes exactly one #.

* For every string ω ∈ Σ⋆, ω ∈ L if and only if there exists at least one string

ν ∈ Σ⋆
C (called a certificate for ω) such that M accepts the string ω#ν ∈ Σ̂⋆.

* There exist a positive constant c1 and a nonnegative constant c0 such that, for

every string µ ∈ Σ̂⋆, if µ = ω#ν for a string ω ∈ Σ⋆ and a string ν ∈ Σ⋆
C , then

the number of steps that M takes when executed on µ is at most c1f(|ω|)+c0.

– For every positive integer, i, the ith symbol in the certificate is |ω| + i + 1 cells to

the right of the leftmost cell on the first tape — so M must make at least |ω|+ i+1
moves before this symbol is seen.

It follows that — since M makes at most c1f(|ω|) + c0 moves — if

i > c1f(|ω|)− |ω|+ c0

— then the ith symbol in the certificate is not read, at all, before the execution of M
on ω ends.

6

Thus, if ν ∈ Σ⋆
C is a certificate for a string ω ∈ L, whose length is greater than

c1f(|ω|)− |ω|+ c0, then the prefix ν̂ ∈ Σ⋆
C with length c1f(|ω|)− |ω|+ c0 is also a

certificate for ω.

It follows that, for every string ω ∈ Σ⋆, ω ∈ L if and only if ω has a certificate whose

length is at most c1f(|ω|)− |ω|+ c0.

– With that noted, consider a nondeterministic Turing machine M̂ , with input alpha-

bet Σ, and a tape alphabet Γ such that Σ ∪ ΣC ∪ {#} ⊆ Γ, implementing the

nondeterministic algorithm in Figure 2 on page 8. One can see by an examination

of the details of this algorithm that a string ω ∈ Σ⋆ is accepted by M if and only

if there is a certificate ν ∈ Σ⋆
C for ω with length at most c1f(|ω|) + c0. It therefore

follows, by what has been noted above about the existence of “short” certificates,

that the language of M̂ is L.

It therefore remains only to show that the computation tree for M̂ and ω is finite, for

all ω ∈ Σ⋆ (so that M̂ decides L) and, furthermore, that this computation tree has

depth in O(f(|ω|)), to complete the proof.

It now suffices to note (as in the analysis of the verification algorithm in Figure 1,

above), that the initial steps of the algorithm in Figure 2 simply use a constant

number of sweeps over the input string, so that they can be carried out using O(|ω|)
moves on input ω. The third step involves the application of a Turing machine, Mf

(assumed, here, to have ℓ tapes) to compute the binary representation of f(|ω|) and

perform additional arithmetic, using O(f |ω|) moves. The total cost of all executions

of step 5 is dominated by the number of moves to repeatedly decrement the value

of a binary counter, with initial value c1f(|ω|) + c0, until the value reaches zero

— which is in O(f |ω|) as well. Steps 6 is executed at most c1f(|ω|) + c0 times

and each execution requires at most a constant number of moves, so that the total

number of moves for all of its executions is also in O(f(|ω|). Step 7 requires a

sweep over the string on the second tape, which has length in O(f |ω|). Finally, the

number of moves of M included in the simulation at line 8 is at most c1f(|ω|) + c0
and, since M is a fixed Turing machine, this can be included as a component of M̂
so that the simulation of each move of M requires only a single move of M̂ . It is

not hard to show that the cost of other steps is in O(f(|ω|) too, so that the total

number of moves used by M̂ is in O(f(|ω|)), as required.

Since L was arbitrarily chosen from NTIMEV(f), it follows that NTIMEV(f) ⊆ NTIME(f).

7

On input ω ∈ Σ⋆ . . .

1. While the symbol visible on the first tape is not blank, copy this symbol onto the second

tape — except that the first of these symbols should be “marked” (with a symbol σ̇ used

instead of a symbol σ ∈ Γ) so that the leftmost cell on the second tape can be located,

later on — and write 1 onto the third tape. Move right on the first, second, and third

tapes without moving on other tapes or changing the contents of any tape except the

second and third.

2. While the symbol visible on the second tape is not a “marked” copy of a symbol in Γ,

move left on both the second and third tapes without moving on other tape or changing

the contents of any tape.

3. Carry out the execution of the deterministic Turing machine Mf , using tapes 3, 4, . . . , ℓ+
2 as Mf ’s tapes. If Mf ’s output tape stores the binary representation of an integer b,
after this, replace this with the binary representation of c1b+ c0.

4. While the symbol visible on the second tape is not blank, move right on this tape

without moving on other tapes of changing the contents of any tape. When a blank is

seen on the second tape write # on this tape, moving right — again, without moving on,

or changing the contents of, other tapes.

5. If the value of the binary counter on the Mf ’s output tape is zero, then go to step 7.

Otherwise decrease the value of this binary counter by one.

6. Nondeterministically guess either to go to step 7 or to guess a symbol τ ∈ ΣC , writ-

ing τ onto the second tape and moving right (again, without moving on or changing the

contents of other tapes) and returning to step 5.

7. While the symbol visible on the second tape is not a “marked” copy of a symbol in Γ
move left on this tape without moving on or changing the contents of other tapes. When

a “marked” symbol σ̇ is visible on the second tape, replace it with the corresponding

“unmarked” symbol σ ∈ Γ on the second tape, without moving on any tape or changing

the contents of any other tape.

8. Simulate the execution of M using the second tape as M ’s first (input) tape and using

tapes ℓ + 3, ℓ + 4, . . . , k + ℓ + 1 as M ’s other tapes — accepting if M accepts, and

rejecting if M rejects.

Figure 2: A Nondeterministic Algorithm to Decide L

8

Proof of Claim #2

Claim 2. TIME(f) ⊆ NTIME(f) for every function f : N → N.

Proof. As described in the lecture notes, it is sufficient to “interpret” a deterministic Turing

machine as a nondeterministic one that never guesses.

Suppose, in particular, that f : N → N and let L ⊆ Σ⋆ such that L ∈ TIME(f). Then there

exists a deterministic Turing machine

M = (Q,Σ, δ, q0, qaccept, qreject)

such that M decides L. Furthermore, there exist a positive integer constant c1 and a nonneg-

ative integer constant c0 such that M uses at most c1f(|ω|) + c0 moves when executed on

input ω, for every string ω ∈ Σ⋆. Suppose that M has k tapes.

Now let

M̂ = (Q,Σ,Γ, δ̂, q0, qaccept, qreject)

be a nondeterministic Turing machine with the same number, k of tapes as M and with the

same set Q of states, input alphabet Σ, tape alphabet Γ, start state q0, accepting state qaccept,

and rejecting state qreject. Suppose as well that, for every state q ∈ Q and all tape symbols

σ1, σ2, . . . , σk ∈ Γ,

δ̂(q, σ1, σ2, . . . , σk) =

{
∅ if q = qaccept or q = qreject,

{δ(q, σ1, σ2, . . . , σk)} otherwise.

Since M and M̂ have the same number of tapes, set of states, and tape alphabet, they also

have the same configurations. With that noted, it is easy to prove the following by induction

on t: For every integer t such that t ≥ 0, and every configuration C of M (and of M̂),

• If M halts after t − 1 or fewer moves, when starting in configuration C, then there is no

configuration that is reachable from C, using t or more moves of M̂ , and

• otherwise, if Ĉ is the configuration that is reachable using t moves of M , when starting

from configuration C, then the set of moves reachable using t moves of M̂ , when started

from configuration is {Ĉ}.

This can be used to show that M̂ accepts ω if and only if M accepts ω, for every string ω ∈ Σ⋆

— and that the depth of the computation tree for M̂ and ω is at most c1f(|ω|) + c0 for every

string ω ∈ Σ⋆. Thus M̂ decides L, since M does and, furthermore, L ∈ NTIME(f).

Since L was an arbitrarily chosen language from TIME(f) it follows that TIME(f) ⊆ NTIME(f),
as claimed.

9

Proof of Clam #3

Claim 3. For every function f : N → N and for every language L ⊆ Σ⋆ such that f ∈
NTIME(f), there exists an integer constant c (depending on L) such that L ∈ TIME(cf). Thus

NTIME(f) ⊆
⋃

c∈N

TIME(cf).

Proof. As described in the lecture notes, it suffices to describe and analyze a deterministic

Turing machine that uses depth-first search in the computation tree for a nondeterministic

Turing machine (that decides a given language), and for a given input string.

With that noted, let L ⊆ Σ⋆ such that L ∈ NTIME(f). Then there exists a nondeterministic

Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

that decides L and, furthermore, there exist a positive integer constant c1 and a nonnega-

tive integer constant c0 such that the depth of the computation tree for M and ω is at most

c1f(|ω|) + c0, for every string ω ∈ Σ⋆. Suppose that M has k tapes.

Let us assume that q0 /∈ {qaccept, qreject} — for either L = ∅ or L = Σ⋆ and L is, trivially

decidable deterministically in constant time (so that there is nothing to prove) otherwise.

Since M is a fixed nondeterministic Turing machine, there exists a positive integer constant U
such that

|δ(q, σ1, σ2, . . . , σk)| ≤ U

for every state q ∈ Q and all tape symbols σ1, σ2, . . . , σk ∈ Γ. It is now easily proved by

induction on a non-negative integer d that, if the computation tree for M and a string ω ∈ Σ⋆

has depth d, then the size of this computation tree is at most d + 1 if U = 1, and at most

Ud+1 − 1 if U ≥ 2.

It is also possible to order the moves that are included in the value of the transition function,

for any input. That is, for q ∈ Q and σ1, σ2, . . . , σk ∈ Γ, if

|δ(q, σ1, σ2, . . . , σk)| = s

(so that s is an integer such that 0 ≤ s ≤ U) then, if s ≥ 1 then we may write δ(q, σ1, σ2, . . . , σk)
as

δ(q, σ1, σ2, . . . , σk) = {χ0, χ1, . . . , χs−1}

where χ0, χ1, . . . , χs−1 ∈ Q× (Γ×{L,R,S})k and, furthermore, χi can be determined from i,
for each integer i such that 0 ≤ i ≤ s− 1.

With all this noted, consider a deterministic Turing machine

M̂ = (Q̂,Σ, Γ̂, δ̂, q̂0, q̂accept, q̂reject)

10

with k+1 tapes, that performs a depth-first search of the computation tree for M and the input

string, ω ∈ Σ⋆ — searching for an accepting configuration.

• M̂ has tape alphabet

Q ∪ Γ ∪ {σ̇ | σ ∈ Γ} ∪ {(,),,,L,R,S}.

• M̂ ’s k+1st tape will describe a path down from the root to some node in the computation

tree. The representation of the path that appears on this tape will be given in more detail,

below.

• The first k tapes of M̂ represent the configuration that M would be in, if it started with

the initial configuration for the input string ω and then carried out the sequence of moves

corresponding to the path shown on the k + 1st tape.

However, the contents of the leftmost cell on each of these tapes is “marked” in order to

make the left end of the tape easy to detect: For 1 ≤ i ≤ k, if the leftmost cell of the ith

tape of M would store a symbol σ ∈ Γ, then the leftmost cell of the ith tape of M̂ stores

the corresponding “dotted” symbol, σ̇, instead.

The contents of the tapes of M̂ can be defined “inductively”, in terms of the length, ℓ, of the

path down the computation tree that is represented by M̂ ’s k + 1st tape.

• If ℓ = 0 then there are no non-blank symbols on M̂ ’s k + 1st tape and the tape head for

this tape is resting on the leftmost cell of the tape. M̂ ’s other tapes represent the initial

configuration for M and the input string ω.

In particular, let n = |ω|.

– If n = 0, so that ω = λ, the empty string, then the leftmost cell of the first tape

should store the “dotted” version of blank, ⊔̇, and every other cell of this tape should

store a blank.

– On the other hand, if n ≥ 1 and

ω = α1α2 . . . αn

then the leftmost cell of the first tape should store α̇1, the ith cell should store αi for

2 ≤ i ≤ n, and every other cell should store a blank.

– The tape head for the first tape should rest on the leftmost cell of the tape, in either

case.

For 2 ≤ i ≤ k, the leftmost cell of the ith tape should store ⊔̇, every other cell should

store a blank, and the tape head for this tape should rest on the leftmost cell.

M̂ ’s finite control should be used to remember that M would be in its start state, q0, at

this point.

11

• Suppose, instead, that ℓ ≥ 1. Then the path P in the computation tree, represented

using the k+1st tape, is obtained by starting with a path P̂ with length ℓ− 1, and adding

one more (downward) edge in the computation tree.

– To begin, consider the contents and positions of tape heads that M̂ ’s tapes would

have, if the (shorter) path P̂ was represented, instead.

For 1 ≤ i ≤ k, the symbol that would be visible on the ith tape, at this point, is a

symbol

σi ∈ Γ ∪ {σ̇ | σ ∈ Γ}.

Thus σ ∈ {σi, σ̇i} for some (corresponding) symbol σi ∈ Γ.

This configuration includes some state q ∈ Q — which is remembered using M̂ ’s

finite control. Furthermore, q /∈ {qaccept, qreject}, since it would not be possible to

extend P̂ by adding another edge, otherwise.

– If q and σ1, σ2, . . . , σk are as above then δ(q, σ1, σ2, . . . , σk) must be a nonempty

subset of Q × (Γ × {L,R,S})k — because it would not be possible to extend the

path P̂ , in the computation tree, otherwise.

Indeed, the path is extended by choosing one of the moves

(r, ((τ1, d1), (τ2, d2), . . . , (τk, dk)))

in the set δ(q, σ1, σ2, . . . , σk) and carrying this move out.

– Thus, for 1 ≤ i ≤ k, the ith tape would be updated, either by replacing σi with τi
(if σi = σi) or by replacing σ̇i with τ̇i (if σi = σ̇i). Let τ i be whichever of τi or τ̇i is

written onto M̂ ’s tape when this update is carried out. The ith tape head would then

move in direction di (staying where it is if di = L and the symbol visible was σ̇i, so

that the tape head was already at the leftmost cell of the tape).

– The representation of P, stored on the k + 1st tape, would be the concatenation of

the representation of P̂ and the string

(q,σ1,σ2, . . . ,,σk,r,(τ1,d1),(τ2,d2), . . . ,(τk,dk))

(with length 8k + 5, in Γ̂⋆) — so that the string representing a path with length ℓ
has length 8kℓ+5ℓ for every integer ℓ ≥ 0. Note that the above string identifies the

tape heads that were resting at the leftmost cell, both before and after this update

was carried out.

M̂ ’s finite control would be used to remember that M would now be in state r.

Each step in the “breadth first search” algorithm can be carried out using O(k)

moves of M̂ . Details needed to establish this (and the correctness of the process)

are left as an exercise.

12

The total number of steps used by the breadth first search algorithm is at most linear in the

size of the computation tree. As noted above, this size is at most c1f(|ω|) + 2 if U = 1 or at

most U c1f(|ω|)+c0+1 − 1 if U ≥ 2. In either case, if we set

c = ⌈max(U, 2)c1⌉

then it follows that

L ∈ TIME(cf) ⊆
⋃

c∈N

TIME(cf).

Since L was arbitrarily chosen from NTIME(f) it follows that

NTIME(f) ⊆
⋃

c∈N

TIME(cf),

as claimed.

13

