
Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Computer Science 511
Nondeterministic Time: Speedup, Emulation, and a

Nondeterministic Time Hierarchy

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #9



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Goals for Today

• Presentation of results concerning the speedup and

emulation of nondeterministic computation, along with a

nondeterministic time hierarchy theorem.

• The proof of the “nondeterministic time hierarchy theorem”

is quite complicated — and it will not be necessary to

understand this. Ideally, students should understand the

results presented in these notes (ideally, along with

simpler proof) and understand how various results can be

applied.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

A Nondeterministic Linear Speedup Theorem

Theorem #1 (Nondeterministic Linear Speedup Theorem):

Let L ⊆ Σ⋆ and let f : N → N be a function such that f (m) ≥ m

for every integer m ≥ 0. Suppose there exists a k-tape

nondeterministic Turing machine M (with one-way infinite

tapes) that decides L, such that the depth of the computation

tree for ω is at most f (|ω|), for every input string ω ∈ Σ⋆.

Let k̂ = max(k ,2) and let ε be any real number such that ε > 0.

Then there exists a k̂-tape nondeterministic Turing machine M̂

(with one-way infinite tapes) that decides L, such that the depth

of the computation tree for ω is at most ε · f (|ω|) + |ω|+ 3 for

every input string ω ∈ Σ⋆.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

A Nondeterministic Linear Speedup Theorem

How This is Proved: Modification of proof of the

(deterministic) Linear Speedup Theorem:

• As in the proof of the result for deterministic computation,

the nondeterministic Turing machine, M̂, should use a tape

alphabet, Γ̂ including symbols that can represent the

contents of m symbols on M ’s tape(s).

• The initialization phase — in which a “compressed”

version of the input string — should be deterministic, and

exactly the same as the initialization phase for the

simulation described in the proof of the original result.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

A Nondeterministic Linear Speedup Theorem

• As in the original simulation, m steps in the computation

tree should be replaced by at most seven steps — so that

m levels in the computation tree, for the input string and

the original nondeterministic Turing machine, are replaced

by at most seven levels in the computation tree for the

same input string, using the new nondeterministic Turing

machine.

• The first two steps should be the same as in the simulation

used in the original proof (so that these are deterministic).

• When information is read at the beginning of the third step,

the nondeterministic Turing machine has all the information

that is needed so that — using at its finite control — the

decision can be made about how to simulate the next

m steps of the original nondeterministic Turing machine.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

A Nondeterministic Linear Speedup Theorem

• If the original nondeterministic Turing machine’s

computation includes an accepting state at the next

m levels below the node for the current configuration, then

the new nondeterministic Turing machine should end the

third step by accepting.

• Otherwise, if the subtree of the computation tree, whose

root stores the current configuration, has depth at most m,

then the new nondeterministic Turing machine should end

the third step by rejecting.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

A Nondeterministic Linear Speedup Theorem

• Finally — if the subtree of the computation tree, whose root

stores the current configuration, has depth greater than m

and does not have any accepting configuration with

distance at most m from the root — then the new

nondeterministic Turing machine’s transition function, for

the third move, should be used to nondeterministically

choose one of the configurations in the configuration tree,

that represents a non-halting configuration, and that is m

levels farther down from the node for the current

configuration.

The rest of the third move, along with the fourth, fifth, sixth

and (if necessary) seventh move should be used to update

the tapes and reposition heads, to obtain a representation

of the selected configuration, just like in the original

simulation.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

A Nondeterministic Linear Speedup Theorem

• This produces a computation tree that includes the same

“root” node (representing the start configuration for the

input string) along with the internal nodes, from the original

computation tree for this input string, that appeared a

levels m, 2m, 3m, and so on. An examination of this

computation tree should be sufficient to confirm that ω is

accepted by M̂ if and only if it was accepted by M.

• One can also see that the computation tree for every input

string (and M̂) must be finite, because the computation

tree for every string and M was finite. Thus M̂ decides the

same language, L, that M does.

• The proof that the depth of the computation tree is reduced

(as claimed) is almost exactly the same as the proof that

the number of steps has been reduced, as given in the

proof of the original claim.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

• As noted in Lecture #3, a k-tape deterministic Turing

machine’s execution can be simulated using either a

one-tape Turing machine or a two-tape Turing machine,

with a polynomial increase in the number of steps used.

• A k-tape nondeterministic Turing machine’s execution

can be simulated, using a nondeterministic Turing machine

with three tapes, even more efficiently.

• Consider, in particular, a 3-tape nondeterministic Turing

machine

M̂ = (Q̂, Σ̂, Γ̂, δ̂, q̂0, q̂accept, q̂reject)

where Σ̂ = Σ ∪ {#}, for a symbol “#” that is not already in

M ’s tape alphabet, Γ.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

• Suppose that M̂ should accept the set of strings in Σ̂⋆ with

the form

ω#T

such that

• T is a non-negative integer, and

• ω ∈ Σ⋆ such that M ’s computation tree for ω includes an

accepting configuration with distance at most T from the
root (so that — in a sense — M accepts ω using at most

T steps).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

Consider a set ST of new symbols with the form

ξq,σ1,σ2,...,σk ,r ,τ1,d1,τ2,d2,...,τk ,dk

such that

• q, r ∈ Q,

• σ1, σ2, . . . , σk , τ1, τ2, . . . , τk ∈ Γ,

• d1,d2, . . . ,dk ∈ {L, R, S}, and

• (r , (τ1,d1), (τ2,d2), . . . , (τk ,dk )) ∈ δ(q, σ1, σ2, . . . , σk ).

These should also be “new” symbols, so that ST ∩ (Γ∪{#}) = ∅.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

• Let M̂ ’s tape alphabet be

Γ̂ = Γ ∪ {#} ∪ ST .

• M̂ will include three tapes, with the following roles

• The first tape is the input tape.

• The second tape is a transition tape: It, effectively, stores

a path down the computation tree of M for ω, with length at

most T , that will be checked.

• The third tape will be used to represent M’s tapes — one

after another — as described below.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

Validation:

• An execution of M̂, on an input string ζ ∈ Σ̂⋆, will begin with

a deterministic validation phase: If the input string

consists of a sequence of zero or more symbols in Σ,

followed by one or more copies of “#” – with no other

symbols after that — then the computation should proceed

with the next phase. The input should be rejected

otherwise.

• This can be carried out using a single sweep to the right

over the input string, so that (if the input tape head is left at

the right end of the input) it can be carried out using at

most |ζ|+ 1 steps.1

1This should include “marking” and remembering the leftmost cell of the

input tape so that it can be found again, later on.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

Guessing Transitions:

• Suppose, now, that ζ has not been rejected — so it is a

string ω#T , for some string ω ∈ Σ⋆ and for some positive

integer T .

• In the next step, after copy of “#”, a sequence of

t ≤ T symbols

χ1, χ2, . . . χt

should be nondeterministically guessed, and written onto

Tape #2. (The machine can be moving back left on the

input tape, over copies of “#” as this happens, in order to

determine that at most T symbols from ST are written out.)

This can also be carried out using at most T ≤ |ζ| steps.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

Validation: Do the states make sense?

For 1 ≤ i ≤ t , suppose that χi represents a move

(si , (τi ,1,di ,1), (τi ,2,di ,2), . . . , (τi ,k ,di ,k))

∈ δ(ri , σi ,1, σi ,2, . . . , σi ,k ).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

Using another sweep over the symbols on Tape #2, one should

confirm that each of the following conditions are satisfied —

rejecting if this is not the case:

• r1 = q0 (so that the sequence of guessed transitions

begins with the start state).

• rj+1 = sj for every integer j such that 1 ≤ j ≤ t − 1 (so

these moves can be followed, in order).

• st = qaccept (so this sequence would result in ω being

accepted by M).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

Validation: Would the tapes make sense?

For 1 ≤ j ≤ k , the simulation should deterministically check

whether the contents of M ’s i th tape would allow each one of

the guessed transitions to be applied:

• When j = 1 the third tape should be initialized to store

#ω ⊔ #

with the tape head pointing to the leftmost symbol in ω (or

the copy of “⊔” between copies of “#”, if ω = λ).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

• When 2 ≤ j ≤ k , this should start by initializing the third

tape to store

# ⊔ #

with the tape head pointing to the copy of “⊔” between the

copies of “#”, instead.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

For 1 ≤ i ≤ t , the transition represented by the symbol χj

should be applied: If χi represents the move

(si , (τi ,1,di ,1), (τi ,2,di ,2), . . . , (τi ,k ,di ,k))

∈ δ(ri , σi ,1, σi ,2, . . . , σi ,k)

then

• the simulation should end with ζ being rejected if symbol

σi ,j is not visible on Tape #3.

• Otherwise the copy of σi ,j on Tape #3 should be replaced

by a copy of τi ,j , and the third tape head should be moved

in direction di ,j .



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

• One Special Case: If di ,j was “L” and “#” is now visible

then the tape head for Tape #3 should be moved back to

the right again (because this was an attempt to move left

on the leftmost cell of the j th tape).

• Another Special Case: If di ,j was “R” and “#” is now visible

then this should be changed to “⊔”, the symbol to the right

should be changed to “#”, and the tape head should be

moved back to the “⊔” that was just written — extending

the part of the tape in use.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

If all t moves are checked, without ζ being rejected, then...

• If 1 ≤ j ≤ k − 1 then Tape #3 should be erased (by moving

to the right copy of “#” and erasing symbols, while moving

left, until the left “#” is found — and this tape should

initialized so that M ’s j + 1st tape can be checked.

• If j = k then — since all tapes have been checked — ζ

should be accepted.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Simulation of a k -Tape

Nondeterministic Turing Machine

One can show the following.

• M̂ accepts a string ζ ∈ Σ̂⋆ if and only if ζ = ω#T for some

string ω ∈ Σ⋆, and for some positive integer T , such that M

accepts ω using at most T steps.

• The number of steps used by M̂, when executed on an

input string ζ ∈ Σ̂⋆ is

• In O(|ω|+ k × T ) if ζ = ω#T
, for a string ω ∈ Σ⋆ and for a

positive integer T , and is

• at most |ζ|+ 1, otherwise.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

Recall, from Lecture #4, that a deterministic multi-tape Turing

machine can be encoded as a string of symbols over an

alphabet

ΣUTM = {s,q,0,1,2,3,4,5,6,7,8,9, L, R, S,Y,N,(,),,,;,#}

A k-tape nondeterministic Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

can be encoded, using a string of symbols over this alphabet, in

almost exactly the same way.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• States, symbols in Γ, and directions of motion (“L”, “R” or

“S”) can be encoded as strings in Σ⋆

UTM in exactly the same

way as for deterministic Turing machines.

• An element of Q × Γk (that is, a possible input for the

transition function) can be encoded as a comma-separated

list of component: For a state q ∈ Q and tape symbols

σ1, σ2, . . . , σk , the input (q, σ1, σ2, . . . , σk ) can be encoded

as

e(q),e(σ1),e(σ2), . . . ,e(σk )

... a string with length in O(log |Q|+ k log |Γ|).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• A move, in Q × (Γ× {L, R, S})k , which might be an element

of one of the outputs of a transition function, can be

encoded in a similar way — with brackets added: If r ∈ Q,

τ1, τ2, . . . , τk ∈ Γ, and d1,d2, . . . ,dk ∈ {L, R, S}, then

(r , (τ1,d1), (τ2,d2), . . . , (τk ,dk ))

can be encoded as

(e(r),((e(τ1),e(d1)),(e(τ2),e(d2)),

. . . ,(e(τk ),e(dk ))))

... also a string with length in O(log |Q|+ k log |Γ|).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• Suppose that q ∈ Q, σ1, σ2, . . . , σk ∈ Γ, and

δ(q, σ1, σ2, . . . , σk ) = {ϕ1, ϕ2, . . . , ϕm}

for a non-negative integer m and for

ϕ1, ϕ2, . . . , ϕm ∈ Q × (Γ× {L, R, S})k .

Suppose furthermore, that ϕ1, ϕ2, . . . , ϕm are ordered in

lexicographic order (that is, by nondecreasing state; for

moves with the same state, by first tape symbol; and so

on).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• Then the transitions δ(q, σ1, σ2, . . . , σk ) can be encoded

using the string

(e(q),e(σ1),e(σ2), . . . ,e(σk ),

(e(ϕ1),e(ϕ2), . . . ,e(ϕm)))

— a string with length in O((m + 1)(log |Q|+ k log |Γ|),
where

m = |δ(q, σ1, σ2, . . . , σk ) ≤ 2k × |Q| × |Γ|k .



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• The transition function, δ, can now be encoded as a string

e(δ) ∈ Σ⋆

UTM — a comma-separated list of encodings of

transitions δ(q, σ1, σ2, . . . , σk , for inputs (q, σ1, σ2, . . . , σk ),
such that q ∈ Q \ {qaccept,qreject} and σ1, σ2, . . . , σk ∈ Γ,

sorted in lexicographic order — enclosed by brackets.

• The string e(δ) has length in Ω(|Q| × |Γ|k log(|Q| × |Γ|k )),
and in O(2k × |Q|2 × |Γ|2k × log(|Q| × |Γ|k )).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• A k-tape nondeterministic Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

can now be encoded exactly as a k-tape deterministic

Turing machine can be encoded — except that the

encoding e(δ) of the transition function, δ, is now as

described above.

• Like the length of the encoding of the transition function,

the length of the encoding of M is in

O(2k × |Q|2 × |Γ|2k × log(|Q| × |Γ|k )).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• Recall that the input alphabet ΣUTM also includes a

symbol, “#”, which has not been used to define encodings

of nondeterministic Turing machines — yet.

• This will be used to define arbitrarily long encodings of

nondeterministic Turing machines: If ζ ∈ Σ⋆

UTM is an

encoding of a nondeterministic Turing machine M then ζ#
is a an encoding of the same nondeterministic Turing

machine M.

• It follows, by a repeated application of this rule, that ζ#h is

also an encoding of M, for every non-negative integer h.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• In order to simplify some constructions it will be assumed

that any string ζ ∈ Σ⋆

UTM, which does not encode a

nondeterministic Turing machine (as now described)

represents a three-state nondeterministic Turing machine

which always rejects its input string using one step — so

that its language is empty.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Encoding a Nondeterministic Turing Machine

• Since |ΣUTM| = 22, there is a bijective function

ϕ : ΣUTM → {i ∈ N | 0 ≤ i ≤ 21}.

Furthermore, we may choose ϕ so that ϕ(;) = 0.

• This can be used (extending ϕ so that it also maps strings

in Σ⋆

UTM to natural numbers) to obtain an enumeration

M0,M1,M2, . . .

of nondeterministic Turing machine, in which every

nondeterministic Turing machine is listed infinitely often.

• See the discussion of enumerations of Turing machines, in

Lecture #4, for details.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Universal Turing Machines —

Problems

Each of the following problems can now be considered.

• Validation of an encoding of a nondeterministic Turing

machine M.

• Simulation of a computation: The input also includes an

encoding of an input string ω for M, with the execution of M

on input ω to be simulated.

• Timed Simulation of a computation: The input also

includes an encoding (in unary) of a positive integer T , so

that nondeterministic Turing machine M, input string ω

for M and integer T are encoded in the input string; the

input should be accepted if and only if M accepts ω using

at most T steps.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Universal Turing Machines —

Validation

Let LNTM ⊆ Σ⋆

UTM be the language of valid encodings of

nondeterministic multi-tape Turing machines, as described

above.

• There exists a deterministic multi-tape Turing machine that

decides the language LNTM, using at number of steps that

is at most linear in the length of the input string.

• This can be shown by modifying the proof that the

language LTM ⊆ Σ⋆

UTM, of encodings of deterministic Turing

machines, is decidable in linear time.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Universal Turing Machines —

Simulation

Next consider the following languages — which are both

subsets of Σ⋆

UTM:

• LNTM+I: The language of encodings of nondeterministic

Turing machines M and input strings ω for M.

• ANTM+I: The language of encodings of nondeterministic

Turing machines M and input strings ω for M such that M

accepts ω.

Once again, an argument for encodings of deterministic Turing

machines, and their inputs, can be used to show that there is a

deterministic multi-tape Turing machine that decides the

language LNTM+I, using a number of steps that is at most linear

in the length of the input string.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Universal Turing Machines —

Simulation

• It is also possible to describe a multi-tape deterministic

Turing machine whose language is ANTM+I — so this

language is recognizable.

• However, one can also show that

ATM+I �M ANTM+I

so that ANTM+I is undecidable, because ATM+I is.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Timed Simulation

Now consider the following languages — which are both

subsets of Σ⋆

UTM:

• LNTM+I+Time: The language of encodings of

nondeterministic Turing machines M, input strings ω for M,

and positive integers T (encoded in unary).

• ANTM+I+Time: The language of encodings of

nondeterministic Turing machines M input strings ω for M,

and positive integers T (encoded in unary) such that M

accepts ω using at most T steps.

An argument for encodings of deterministic Turing machines,

their inputs, and time bounds can be modified to show that

there is a deterministic multi-tape Turing machine that decides

the language LNTM+I+Time using a number of steps that is at

most linear in the length of the input string.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Timed Simulation

• A “nondeterministic universal Turing machine”, which

decides the language ANTM+I+Time, can be be based on the

simulation of a nondeterministic k-tape Turing machine, by

a nondeterministic three time, given at the beginning of

these lecture notes.

Consider an execution of such a “nondeterministic universal

Turing machine” on an input string ζ ∈ Σ⋆

UTM with length N.

• It can be (deterministically) decided whether

ζ ∈ LNTM+I+Time using a number of steps at most linear

in |ζ| — and the input string can be rejected if this is not

the case.



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Timed Simulation

Suppose, instead, that ζ ∈ LNT+I+Time and that ζ encodes a

nondeterministic Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject),

an input string ω ∈ Σ⋆ with length n, and a positive integer T .

Let ℓ be the length of the substring of ζ that encodes M ’s

transition function, δ — so that

• ℓ ≤ |ζ|,

• ℓ ∈ O(2k × |Q|2 × |Γ|2k × log(|Q| × |Γ|k )), and

• ℓ ∈ Ω(|Q| × |Γ|k × log(|Q| × |Γ|k )).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

Nondeterministic Timed Simulation

• A sequence of at most T transitions to be applied, during

a simulation of an execution of M on input ω, can be

nondeterministically guessed, with their encodings written

onto a tape, using a number of steps at most linear in ℓ×T .

• The encoding of the sequence of transitions, to be used,

will be a string with length in

O(T × log(|Q| × |Γ|k )) = O(T × (log |Q|+ k × log |Γ|)).

• Processing on each of M ’s tapes can be considered using

a number of steps in O(T × (log |Q|+ k × log |Γ|)) steps as

well.

• Indeed, the nondeterministic universal Turing machine’s

computation on input ζ can be completed (after confirming

that ζ ∈ LNTM+I+Time) using a number of steps at most linear

in O(T × (ℓ+ k log |Q|+ k2 log |Γ|)).



Nondeterministic Speedup Nondeterministic Simulation and Emulation Nondeterministic Time Hierarchy

A Nondeterministic-Time Hierarchy Theorem

Nondeterministic Time Hierarchy Theorem: Let f ,g : N → N

be time constructible functions such that f and g are

nondecreasing functions, f (n) ≥ n for all n ∈ N, and

g(n + 1) ∈ o(f (n)). Then

NTIME(g(n)) ( NTIME(f (n)).

• This result is used using some of the results given above.

• This cannot be established using a direct application of a

diagonalization argument — because exchanging

accepting and rejecting states does not guarantee that a

string would be nondeterministically rejected after this, if it

was nondeterministically accepted before!

• A supplemental document gives more details about the

proof of its result. Its application is similar to an application

of the Deterministic Time Hierarchy Theorem.


	Nondeterministic Speedup
	Nondeterministic Simulation and Emulation
	Nondeterministic Time Hierarchy

