Lecture \#9: Nondeterministic Time - Speedup, Emulation, and a Nondeterministic Time Hierarchy Theorem Lecture Presentation

This lecture describes a surprisingly simple simulation of a k-tape nondeterministic Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

by a three-tape nondeterministic Turing machine, with input alphabet $\widehat{\Sigma}=\Sigma \cup\{\#\}$ (for a symbol \# that does not belong to Σ) - whose correctness might not be obvious. This algorithm processes a string $\mu \in \widehat{\Sigma}^{\star}$ which should encode both an input string ω for M, and a bound T on the number of steps that M should take. It is summarized in Figure 2 (which can be found several pages after this one).

As noted above, it might not be obvious that this algorithm is correct - so it might be helpful to consider a different process, which uses $k+2$ tapes, that is shown in Figure 1, before that.

The correctness of the simulation given in the lecture notes can be established as follows:

1. Establish the correctness of the simulation that is summarized in Figure 1.
2. Establish that if the simulation in Figure 1 is correct, then the simulation in Figure 2 must be correct too.
3. Conclude that the simulation in Figure 2 is correct.

Note: The simulation, being considered here, is adapted (in the lecture notes) to describe a "nondeterministic universal Turing machine" which decides a language $A_{\text {NTM }+1+\text { Time }}$. This Turing machine (and results that can be proved about it) is then used to establish a "Nondeterministic Time Hierarchy Theorem" - so its correctness is (arguably) important.

```
On input }\mu\in\mp@subsup{\widehat{\Sigma}}{}{\star}
    1. if ( }\mu\mathrm{ is }\omega\mp@subsup{#}{}{T}\mathrm{ for a string }\omega\in\mp@subsup{\Sigma}{}{\star}\mathrm{ and a positive integer T) {
    2. Nondeterministically guess a sequence }\mp@subsup{\chi}{1}{},\mp@subsup{\chi}{2}{},\ldots,\mp@subsup{\chi}{t}{}\mathrm{ of possible moves,
        for an integer t such that 1\leqt\leqT
    3. for (1\leqi\leqt){
    4. if (initial state in }\mp@subsup{\chi}{i}{}\mathrm{ makes sense) {
    5. for (1\leqj\leqk){
    6. if (management of Tape #j by }\mp@subsup{\chi}{i}{}\mathrm{ does not make sense) {
    7. reject
        }
        }
        }
8. if ( }\mp@subsup{\chi}{t}{}\mathrm{ take }M\mathrm{ to state }\mp@subsup{q}{\mathrm{ accept }}{})
9. accept
    } else {
10. reject
        }
    } else {
11. reject
    }
}
```

Figure 1: Another simulation of a k-Tape Nondeterministic Turing Machine

Correctness of the Simulation in Figure 1

```
On input \(\mu \in \widehat{\Sigma}^{\star}\{\)
    1. if \(\left(\mu\right.\) is \(\omega \#^{T}\) for a string \(\omega \in \Sigma^{\star}\) and a positive integer \(T\) ) \{
    2. Nondeterministically guess a sequence \(\chi_{1}, \chi_{2}, \ldots, \chi_{t}\) of possible moves,
        for an integer \(t\) such that \(1 \leq t \leq T\)
    3. if (states in \(\chi_{1}, \chi_{2}, \ldots, \chi_{t}\) make sense) \(\{\)
4. for \((1 \leq j \leq k)\{\)
5. if (management of Tape \#j by \(\chi_{1}, \chi_{2}, \ldots, \chi_{t}\) does not make sense) \{
6. reject
        \}
    7. accept
        \} else \{
    8. reject
        \}
    \} else \{
    9. reject
    \}
\}
```

Figure 2: Nondeterministic Simulation of a k-Tape Nondeterministic Turing Machine

