
Lecture #9: Nondeterministic Time — Speedup, Emulation,

and a Nondeterministic Time Hierarchy Theorem

Proof of the Nondeterministic Time Hierarchy Theorem

The goal of this document — which is for interest only (and not required reading) is to present

a proof of the following.

Theorem (Nondeterministic Time Hierarchy Theorem). Let f, g : N → N be time constructible

functions such that f and g are nondecreasing functions, f(n) ≥ n for all n ∈ N, and g(n+1) ∈
o(f(n)). Then

NTIME(g(n)) (NTIME(f(n)).

A similar result — the “Deterministic Time Hierarchy Theorem” was proved using a Diagonal-

ization argument, considering an algorithm that simulated an execution on an encoded Turing

machine and then flipping the answer (by exchanging accepting and rejecting states) — so that

a contradiction can be obtained when considering what happens when this algorithm receives

(as input) an encoding of a Turing machine implementing the same algorithm.

This does not work, here, because exchanging accepting and rejecting states does not, nec-

essarily, change the outcome of a nondeterministic computation.

In order to deal with, a technique sometimes called “lazy diagonalization” is introduced and

used: A language LD ⊆ {1}⋆ is introduced, whose inputs can be thought of as unary repre-

sentations of indices in a listing of nondeterministic Turing machines.

• The language is defined in such a way that, if NTIME(g(n)) = NTIME(f(n)), then it

must be true that either

1
ℓ, 1ℓ+1, 1ℓ+2, . . . , 1r

must all belong to LD, or none of these values belong to LD, for positive integers ℓ and r.

• However, r is so much larger than ℓ that it is possible to deterministically check whether

1
ℓ belongs to LD when 1

r is given as input — and this can to be used to make sure that

exactly one of 1ℓ and 1
r belongs to LD.

• Since these statements cannot both hold, a contradiction is obtained, as needed to es-

tablish the complexity classes NTIME(g(n)) and NTIME(f(n)) must be different.

1

The Nondeterministic Time Hierarchy Theorem refers to two time-constructible functions f
and g. A third function, h : N → N, is also required to prove this result — it is used to define

the values “ℓ” and “r” in the above summary.

Definition 1. Suppose that f : N → N is the time-constructible function mentioned in the

Nondeterministic Time Hierarchy Theorem. Let h : N → N be defined as follows:

• h(0) = 2, and

• if i ≥ 0 then h(i+ 1) = cf(h(i)) where

c =

{
2 if i ≤ 2, and

2⌈log2 i⌉ otherwise.

Since f(n) ≥ n for all n ∈ N, h is certainly a strictly increasing function of n. Indeed, it grows

so rapidly that proving the following claim is not trivial.

Lemma 2. Given a unary representation of a positive integer n such that n ≥ 3, it is possible

to compute the binary representation of the unique integer i such that h(i) < n ≤ h(i + 1),
deterministically, using a number of steps that is at most linear in f(n).

Proof. To begin, notice that h(i) is a power of two for every integer i ≥ 0, so that h(i) < n ≤
h(i+1) if and only if log2 h(i) < ⌈log2 n⌉ ≤ log2 h(i+1) — and there is only one integer i that

satisfies this constraint. It is therefore sufficient to check this condition.

Notice, as well, that it follows by the above definition that log2 h(0) = 1 and, for i ≥ 1,

log2 h(i+ 1) =

{
f(h(i)) if i ≤ 2,

⌈log2 i⌉ · f(h(i)) if i > 2.
(1)

Now consider the algorithm shown in Figure 1. This computes binary representations of values

hi = h(i) and ji = f(h(i)) as part of its processing.

To see that this algorithm computes the integer i such that h(i) < i ≤ h(i + 1), note that the

integer d computed at lines 6–8 is equal to log2 c, where c is the integer used in the recursive

definition of h(i+ 1) from h(i) — so that

log2 h(i + 1) = d× f(h(i)) = d× ji

if hi = h(i) and ji = f(hi) = f(h(i)).

Since (log2 h(i + 1))/d ∈ N, this implies that the test at line 9 passes if and only if i is the

smallest integer such that log2 n ≤ log2 h(i + 1), that is, if and only if h(i) < n ≤ h(i + 1), as

required. It also implies that hi+1 = h(i+ 1) is correctly computed at line 11.

2

On input 1n where n ≥ 3:

1. Compute the binary representation of n. Then compute the binary representation

of ⌈log2 n⌉ — the length of the binary representation of n if n is not a power of two

and one less than this, otherwise.

2. i := 0; hi := 2

3. while (true) {

4. Use the binary representation of hi to compute the unary representation 1
hi of hi.

5. Use the unary representation of hi to compute the binary representation of ji = f(hi).

6. if (i ≤ 2) {

7. d := 1

} else {

8. d := ⌈log2 i⌉
}

9. if (⌈⌈log2 n⌉/d⌉ ≤ ji) {

10. return i

}

11. Compute the binary representation of hi+1 = 2d×ji

12. i := i+ 1

}

Figure 1: Computation of Integer i Such That h(i) < n ≤ h(i)

Now consider the time used to execute this algorithm. Steps 1 and 2 can be carried out using

O(n) steps and this is certainly in O(f(n)).

To continue, let us consider the cost to execute the loop at lines 3–12. Let us consider the (total)

cost of all but the final execution of the loop body — so that i is too small, and n > h(i + 1).
To begin, consider a single execution of the loop body when this is the case.

• Step 4 can be carried out using O(h(i)) steps.

• Since f is time-constructible, step 5 can be carried out using O(f(h(i)) steps.

• Steps 6–8 can be carried out using O(i) steps, and this is certainly in O(h(i)).

• The computation of⌈⌈log2 n⌉/d⌉, required for step 9, requires O((log n)2) steps. Once

a binary representation of ⌈⌈log2 n⌉/d⌉ is available, the rest of step 9 can be completed

using O(log2 f(h(i))) steps.

• Step 11 requires the multiplication of a pair of integers whose binary representations

each have length in O(log2 h(i+1)) to compute the binary representation of h(i+1) —

3

followed by conversion from a binary representation of this value to a unary representa-

tion of it.

This can be carried out using O(h(i + 1)) steps.

• It follows that the cost of everything except the computation of ⌈⌈log2 n⌉/d⌉ has cost in

O(h(i + 1)).

This allows us to bound the total cost of all these executions of the loop body as follows.

• Note next that h is growing at least exponentially with its input — and it is not hard to use

this to argue that
i∑

j=1

h(j) ∈ O(h(i)).

Thus the total cost of all these operations is in O(h(i + 1)) and this is in O(n), since

h(i + 1) ≤ n for the value of i currently being considered.

• Since h is growing at least exponentially with its input there are O(log2 n) executions of

step 9, so the total cost of all computations of ⌈⌈log2 n⌉/d⌉, for various values of d, is in

O((log2 n)
3) ⊆ O(n).

• It now follows that the total cost of all steps except those in the last execution of the loop

body is in O(n), and this certainly in O(f(n)).

Now consider the cost of the steps in the last execution of the body of the loop.

• Since hi = h(i) < n, step 4 can be carried out using O(n) steps.

• Since f is time-constructible and nondecreasing, step 5 can be carried out using O(f(h(i))
steps and, since h(i) ≤ n, this is in O(f(n)).

It follows that binary representation of ji = f(h(i)) has length in O(f(n)).

• Thus — since ⌈⌈logn⌉/d⌉ can be computed cheaply and certainly has length in O(f(n))
too, the test at line 9 can also be carried out using O(f(n)) steps.

• The return statement is certainly inexpensive and is the last step executed.

• Thus the cost of the final execution of the body of the loop is in O(f(n)) as well, as

required to establish the claim.

To continue, we will try to use diagonalization to construct some language LD, that is in

NTIME(f(n)) but not in NTIME(g(n)). This is complicated because we cannot just “flip” the

answer for a nondeterministic computation, like we can with deterministic computation — this

4

would generally still have strings being accepted by nondeterministic Turing machines when

we do not want them to be (why?).

The trick here is to use a technique sometimes lazy diagonalization. Rather than ensuring

that the wrong answer is given by a too-fast machine on a specific input it suffices to ensure

that it must make a mistake on one of a large set of input strings instead.

With that noted, the language LD ⊆ {1}⋆ that is decided by a nondeterministic Turing machine

implementing the algorithm shown in Figure 2 on page 6.

Lemma 3. LD ∈ NTIME(f(n)).

Proof. Consider the nondeterministic algorithm in Figure 2, on page 6, which decides LD.

• It follows by Lemma 2 that the integer i can be discovered in time O(f(n)). Since i is

logarithmic in n it is not hard to show that the unpadded encoding µi ∈ Σ⋆
UTM, of the

nondeterministic Turing machine Mi, can be computed using time in O(n) ⊆ O(f(n))
as well.

• If “tapes for a future simulation” were set up when step 1 was carried out then step 2 can

be completed in constant time.

• Since c is so small, a binary representation of c2 can certainly be computed using deter-

ministic time in O(n). Step 3 can be carried out using a linear sweep over the unpadded

encoding µi of Mi — whose length is in O(log2 n) — so this step can certainly be carried

out using time in O(n) ⊆ f(n) too.

• Since f is a time-constructible function step 4 can be carried out — deterministically —

using O(f(n)) steps too.

• It is certainly easy to check the test at line 5 using time in O(n) ⊆ O(f(n)).

• The value ℓ, mentioned in step 7, is computed “along the way” when i is computed in

step 1. If it is remembered, at this point, then step 7 can be carried out using a number

of steps in O(log n), since the length of a binary representation of ℓ is not significantly

longer than log2 n.

• Finally, the time needed to carry out either of steps 6 or 8 can be shown to be in O(f(n))
because of the use of the binary counter to terminate simulations if they would need

more than f(n) steps.

Thus this algorithm uses O(f(n)) steps in the worst case. By definition, it accepts every string

in LD and it rejects every string in {1}⋆ that is not in LD, as needed to establish the claim.

The proof of the following is the place where lazy diagonalization is being employed: The

analysis at the end implies that any “too-fast” nondeterministic Turing machine, accepting a

5

On input 1n where n ≥ 3:

1. Compute the integer i ≥ 0 such that h(i) < n ≤ h(i + 1) — remembering the positive

integer c such that h(i+ 1) = cf(h(i)). Let

Mi = (Q,Σ,Γ, δ, q0, qaccept, qreject)

and let k be the number of tapes used by Mi. Make sure that the (unpadded) encoding

µi ∈ Σ⋆
UTM of Mi has been written onto a tape for later use.

2. if (|Σ| 6= 1) { reject }

3. If there exists a state q ∈ Q and symbols σ1, σ2, . . . , σk ∈ Γ such that

|δ(q, σ1, σ2, . . . , σk)|2 ≥ c

then reject .

4. Compute the binary representation of f(n) and initialize a binary counter to have this

value.

5. if (n < h(i+ 1)) {

6. Apply the nondeterministic universal Turing machine described in the lecture notes,

with an encoding of Mi, 1
n+1, and 1.5 × g(n + 1) as input, to try to decide

whether there is an accepting computation for Mi on input 1
n+1 with length at

most 1.5 × g(n + 1) — but using the binary counter to keep track of the number of

steps taken by this nondeterministic universal Turing machine.

If the nondeterministic universal Turing machine has still not halted after at most f(n)
of its own steps then reject .

Otherwise accept if the nondeterministic universal Turing machine has accepted its

input, and reject otherwise.

} else { // Note: n = h(i + 1).
7. ℓ := h(i)

8. Try to use exhaustive search — by checking every possible sequence of guessed

moves to determine whether there exists an accepting computation of Mi on in-

put 1ℓ+1 with length at most 1.5× g(ℓ+1) — but using the binary counter from step 4

to make sure that this simulation does not include more than f(n) steps.

If the simulation has still not halted after f(n) steps then reject . If it halted and an

accepting computation with length at most g(ℓ+1) was found then reject . Otherwise

accept .

}

Figure 2: Algorithm Deciding a Language LD

6

language in {1}⋆, must make a mistake about membership about membership of 1n in LD, for

some value n such that h(i) + 1 ≤ n ≤ h(i + 1), for some i ∈ N.

Lemma 4. LD /∈ NTIME(g(n)).

Proof. By contradiction. Suppose LD ∈ NTIME(g(n)).

• Then there exists a nondeterministic Turing machine M̂ that decides LD using time

in O(g(n)).

• The Nondeterministic Linear Speedup Theorem, given in the notes for Lecture #9, can

be used to conclude that there is a nondeterministic Turing machine M , that decides L,

such that the computation tree for M on an input ω ∈ {1}⋆ has depth at most 1.5 · g(n),
when n = |ω|, for every nonempty string ω ∈ {1}⋆.

• Consider what happens when the algorithm in Figure 2, that decides LD, is applied to a

string 1
n for which the corresponding nondeterministic Turing machine Mi (considered

in the algorithm) corresponds to a sufficiently long padded encoding of M .

• The algorithm does not reject 1n at step 2, because corresponding nondeterministic

Turing machine Mi has an input alphabet with size one.

• For n ≥ 3 let cn be the value for “c” at step 1. Even though it grows extremely slowly, it is

possible to argue that

lim
n→+∞

cn = +∞.

Since the maximum size of any set included in M ’s transition function is a constant (not

depending on the length of a padded encoding of M) this can be used to argue that for

sufficiently large integer n, with the corresponding nondeterministic Turing machine Mn

being a padded version of M , 1n will not be rejected at line 3, either.

• Consider the use of the nondeterministic Turing machine in step 6, if this is reached

and executed. Recall that the number of steps used here, to simulate each move of M ,

depends only on M (and not the length of its padded encoding).

Since g(n+1) ∈ o(f(n)) this implies that — for sufficiently large n — the binary counter

never runs down to zero, and the simulation ends before 1
n is either accepted or rejected.

In other words, 1n is accepted by Mi if and only if 1n+1 would be too.

• Consider the deterministic simulation at step 8, if this is reached and executed. Since

|δ(q, σ1, σ2, . . . , σk)|2 < c

the number of sequences of guessed moves with length at most 1.5 · g(ℓ+ 1) is at most

linear in (√
c
)1.5×g(ℓ+1)

7

The total number of steps used in the simulation is now bounded by the product of some

fixed value depending on M — but not on the length of a padded encoding — and

(√
c
)1.5×g(ℓ+1) × g(ℓ+ 1) ∈ o(cg(ℓ+1)).

Since g(n + 1) ∈ o(f(n)), g(ℓ + 1) < f(ℓ) for sufficiently large ℓ and, indeed, the total

number of steps used by this simulation is less than

cf(ℓ) = cf(h(i)) = h(i + 1) = n ≤ f(n).

Thus the binary counter is never run down to zero in this case either, so this simulation

is also run to completion.

• Consider what this implies about the language LD when n is so large that all the above

conditions are satisfied: On input n, either step 6 or 8 is reached and the input string is

either accepted or rejected before the binary counter runs down to zero.

– We may assume that this is true for every integer n such that h(i) < n ≤ h(i + 1)
— noting that a padded version of the same nondeterministic Turing machine M is

considered by the algorithm when 1
n is received as input for any integer n in this

range.

– Case: 1h(i)+1 /∈ LD. When the algorithm is run on input 1h(i)+1 it reaches step 6

and simulates the execution of M on input 1h(i)+2. Since the timer does not run

down one can see by an inspection of this step that 1h(i)+2 /∈ LD — because the

algorithm would accept 1h(i)+1, otherwise.

Indeed, considering the behaviour of the algorithm on inputs 1
k for k = h(i) +

2, h(i) + 3, . . . , h(i + 1) − 1 — and seeing that step 6 is reached in every case —

one can see that

LD ∩ {1h(i)+1, 1h(i)+2, . . . , 1h(i+1)−1, 1h(i+1)} = ∅.

– Case: 1h(i)+1 ∈ LD. When the algorithm is run on input 1h(i)+1 it reaches step 6

and simulates the execution of M on input 1h(i)+2. Since the timer does not run

down one can see by an inspection of this step that 1h(i)+2 ∈ LD — because the

algorithm would reject 1h(i)+1, otherwise.

Indeed, considering the behaviour of the algorithm on inputs 1
k for k = h(i) +

2, h(i) + 3, . . . , h(i + 1) − 1 — and seeing that step 6 is reached in every case —

one can see that

{1h(i)+1, 1h(i)+2, . . . , 1h(i+1)−1, 1h(i+1)} ⊆ LD.

– Thus

1
h(i)+1 ∈ LD ⇐⇒ 1

h(i+1) ∈ LD.

8

– However, if the algorithm is executed on input 1h(i+1) then step 8 is reached and

executed. Since the binary counter never runs down one can see by an inspection

of this step that

1
h(i)+1 ∈ LD ⇐⇒ 1

h(i+1) /∈ D.

– Since both of these cannot be true at the same time a contradiction has been

obtained, as needed to establish the claim.

Proof of the Nondeterministic Time Hierarchy Theorem. Since g is a nondecreasing function

and g(n + 1) ∈ o(f(n)), g(n) ∈ o(f(n)) as well, and it certainly follows that NTIME(g(n)) ⊆
NTIME(f(n)). The result is now a straightforward consequence of Lemmas 3 and 4.

9

