Computer Science 511 Nondeterministic Time: More about NP— and co-NP

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #10

$\text{co-}\mathcal{NP}$

Goals for Today

Goals for Today

- Review fundamentals of the theory of \mathcal{NP} -completeness.
- Introduce the complexity class co-*NP* along with a conjecture about that, and a consequence of that conjecture.

- Definition: A language L ⊆ Σ* is *NP*-Hard (or, respectively *NP*-Complete) it is hard (respectively, complete) for *NP* with respect to polynomial-time many-one reductions.
- One can also consider languages that are hard (respectively, complete) with respect to polynomial-time oracle reductions. A reason, why the first definitions of hardness (respectively, completeness) are generally preferred, will be given later on in these notes.

Consider the language $A_{\text{NTM+I+Time}}$ — consisting of encodings of nondeterministic multi-tape Turing machines M, input strings ω for M, and positive integers T (encoded in unary) such that M accepts ω using at most T steps — introduced in Lecture #9.

Claim #1: $A_{\text{NTM+I+Time}} \in \mathcal{NP}$.

How This Can Be Proved: Consider a verification algorithm such that

- The certificate alphabet is the same as the input alphabet, $\Sigma_{\rm UTM}.$
- A *certificate* for a string µ ∈ A_{NTM+I+Time}, encoding a nondeterministic Turing machine

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}),$

input string $\omega \in \Sigma^*$, and positive integer *T*, is an encoding ζ of a sequence of *t* moves, where $t \leq T$, that are consistent with *M*'s transition function δ , going from the initial configuration for ω to an accepting configuration. Such a certificate exists, and $|\zeta| \leq |\mu|^2$ for every such certificate ζ .

- Given an input that includes a string μ (such that we wish to check whether μ ∈ A_{NTM+I+Time}) and a string ζ (that might be a certificate), a verification algorithm could proceed as follows.
 - Check whether μ ∈ L_{NTM+l+Time}, for the language L_{NTM+l+Time} introduced in Lecture #9) *rejecting* if this is not the case. Suppose, now, that μ encodes a nondeterministic Turing machine *M*, input string ω for *M*, and a positive integer *T*.
 - 2. Check whether $|\zeta| \le |\mu|^2 rejecting$ if this is not the case.
 - Check whether *ζ* encodes a sequence of at most *T* moves that are consistent with *M*'s transition function, *δ rejecting* if this is not the case.
 - 4. Apply the steps used by the "nondeterministic universal Turing machine", from Lecture #9, to continue (*after* an encoding of a sequence of moves has been guessed) noting that the remaining steps are deterministic, and can be used to complete a validation algorithm.

Claim #2: Let $L \subseteq \Sigma^*$, for an alphabet Σ , such that $L \in \mathcal{NP}$. Then $L \preceq_{P, M} A_{TM+I+Time}$.

Sketch of Proof:

• Since $L \in \mathcal{NP}$ there exists a nondeterministic Turing machine

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

and non-negative integers c_0 , c_1 and d such that M decides L, and M's computation tree for ω has depth at most $c_1 \cdot |\omega|^d + c_0$ for every string $\omega \in \Sigma^*$.

- Since *M* is a *fixed* nondeterministic Turing machine, its shortest encoded is a *fixed* string in Σ^{*}_{UTM}.
- The function

$$f: \Sigma^{\star} \to \Sigma^{\star}_{\mathsf{UTM}}$$

mapping each string $\omega \in \Sigma^*$ to the encoding of M, ω (as an input for M) and the time bound $c_1 \cdot |\omega|^d + c_0$, can be shown to be a polynomial-time many-one reduction from L to $A_{\text{NTM+I+Time}}$ — establishing that $L \preceq_M A_{\text{NTM+I+Time}}$, as claimed.

- It follows by Claim #1, Claim #2, and the definition of " \mathcal{NP} -complete" that the language $A_{\text{NTM + Time + I}}$ is \mathcal{NP} -complete.
- Unfortunately, this is not very helpful because it is not clear how one can use this information to show that any *other* languages are \mathcal{NP} -complete, too.
- Lectures #10 and #11 review results establishing the existence of a *large* collection of \mathcal{NP} -complete languages.
- This makes the *process* to establish the *NP*-completeness of a given language — described next — easier to use.

Proving \mathcal{NP} -Completeness of a Given Language

Suppose we want to prove that a given language $L \subseteq \Sigma^*$ is \mathcal{NP} -complete. Then the following **process** can be used to do this — noting that steps #1 and #2, below, can be carried out in either order.

- Prove that L ∈ NP. This is, generally, accomplished by describing a *certificate* for a string in L, along with a *polynomial-time verification algorithm* for this language and set of certificates.
- Prove that *L* is *NP*-hard by choosing some other language *L* ⊆ Σ^{*}, that is already known to be *NP*-complete, and then describing (and proving correctness of) a polynomial-time many-one reduction from *L* to *L*.

It will then follow, by Corollary #16 in Lecture #7, that *L* is \mathcal{NP} -complete.

Proving \mathcal{NP} -Completeness of a Given Language

Note:

- Both of these steps require that an algorithm be presented and proved to be both correct and asymptotically efficient.
 Refinement — a process where you describe, and establish the correctness and efficiency of a "high-level" algorithm, and then gradually add detail in a correctnessand efficiency-preserving way — will often be useful.
- The choice of the \mathcal{NP} -complete language \widehat{L} , used in Step #2, can be very important! Describing a polynomial-time many-one reduction, from this language to *L*, can be significantly simpler for some choices of this language than it is for others.

Recall that if $L \subseteq \Sigma^*$ then the *complement* of *L* is the language

$$L^{C} = \{ \omega \in \Sigma^{\star} \mid \omega \notin L \}.$$

Some references denote this by \overline{L} instead of L^{C} .

It is easy to prove that $L \in \mathcal{P}$ if and only $L^{\mathcal{C}} \in \mathcal{P}$, for every language $L \subseteq \Sigma^*$.

It is **not** known whether this is also true for \mathcal{NP} , but most computer scientists (with an opinion) believe that it is not.

Definition: co-
$$\mathcal{NP} = \{L^C \mid L \in \mathcal{NP}\}.$$

Conjecture: $\mathcal{NP} \neq \text{co-}\mathcal{NP}$.

The following is easy to prove.

Claim #3:

(a)
$$\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$$
.

(b) If
$$\mathcal{P} = \mathcal{NP}$$
 then $\mathcal{NP} = \text{co-}\mathcal{NP}$.

(c) If either
$$\mathcal{NP} \subseteq \text{co-}\mathcal{NP}$$
 or $\text{co-}\mathcal{NP} \subseteq \mathcal{NP}$ then $\mathcal{NP} = \text{co-}\mathcal{NP}$.

It is not known whether $\mathcal{P} = \mathcal{NP} \cap \text{co-}\mathcal{NP}$.

A Useful Closure Property

The following is also easy to prove.

Claim #4:

- (a) The complexity class \mathcal{NP} is closed under polynomial-time many-one reductions.
- (b) For all languages $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$, if $L_1 \preceq_{P, M} L_2$ then $L_1^C \preceq_{P, M} L_2^C$.
- (c) The complexity class $\text{co-}\mathcal{NP}$ is closed under polynomial-time many-one reductions.

Definition: A language $L \subseteq \Sigma^*$ is **co-\mathcal{NP}-hard** (respectively **co-\mathcal{NP}-complete**) if *L* is hard (respectively, complete) for co- \mathcal{NP} with respect to polynomial-time many-one reductions.

Claim #5: For every language $L \subseteq \Sigma^*$,

(a) *L* is \mathcal{NP} -hard if and only if L^C is co- \mathcal{NP} -hard.

(b) *L* is \mathcal{NP} -complete if and only if L^C is co- \mathcal{NP} -complete.

It follows from this that, as languages are proved to be \mathcal{NP} -complete, related languages are established as co- \mathcal{NP} -complete with no extra work.

As previously noted it is conjectured — but known — that polynomial-time oracle reductions and polynomial-time many-one reductions are not the same. As the following result shows, this conjecture is related to conjecture about the relationship between \mathcal{NP} and co- \mathcal{NP} that is given above.

Claim #6: If $\mathcal{NP} \neq \text{co-}\mathcal{NP}$ then there exist languages $L_1, L_2 \subseteq \Sigma^*$ (for an alphabet Σ) such that $L_1 \preceq_{P, O} L_2$, but $L_1 \preceq_{P, M} L_2$.