Computer Science 511

Nondeterministic Time: More about $\mathcal{N} \mathcal{P}$ - and co- $\mathcal{N} \mathcal{P}$

Instructor: Wayne Eberly
Department of Computer Science
University of Calgary

Lecture \#10

Goals for Today

Goals for Today

- Review fundamentals of the theory of $\mathcal{N} \mathcal{P}$-completeness.
- Introduce the complexity class co- $\mathcal{N} \mathcal{P}$ - along with a conjecture about that, and a consequence of that conjecture.

$\mathcal{N P}$-Completeness

- Definition: A language $L \subseteq \Sigma^{\star}$ is $\boldsymbol{\mathcal { N } \mathcal { P } \text { -Hard (or, }}$ respectively $\boldsymbol{\mathcal { N }} \mathcal{P}$-Complete) it is hard (respectively, complete) for $\mathcal{N P}$ with respect to polynomial-time many-one reductions.
- One can also consider languages that are hard (respectively, complete) with respect to polynomial-time oracle reductions. A reason, why the first definitions of hardness (respectively, completeness) are generally preferred, will be given later on in these notes.

An $\mathcal{N P}$-Complete Language

Consider the language $A_{\text {NTM }+1+\text { Time }}$ - consisting of encodings of nondeterministic multi-tape Turing machines M, input strings ω for M, and positive integers T (encoded in unary) such that M accepts ω using at most T steps — introduced in Lecture \#9.

Claim \#1: $A_{\text {NTM }+1+\text { Time }} \in \mathcal{N P}$.

An $\mathcal{N} \mathcal{P}$-Complete Language

How This Can Be Proved: Consider a verification algorithm such that

- The certificate alphabet is the same as the input alphabet, $\Sigma_{\text {итм }}$.
- A certificate for a string $\mu \in A_{\text {NTM }+1+\text { Time }}$, encoding a nondeterministic Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right),
$$

input string $\omega \in \Sigma^{\star}$, and positive integer T, is an encoding ζ of a sequence of t moves, where $t \leq T$, that are consistent with M 's transition function δ, going from the initial configuration for ω to an accepting configuration. Such a certificate exists, and $|\zeta| \leq|\mu|^{2}$ for every such certificate ζ.

An $\mathcal{N} \mathcal{P}$-Complete Language

- Given an input that includes a string μ (such that we wish to check whether $\mu \in A_{\text {NTM }+1+\text { Time }}$) and a string ζ (that might be a certificate), a verification algorithm could proceed as follows.

1. Check whether $\mu \in L_{N T M+1+T i m e}$, for the language $L_{N T M+1+T i m e}$ introduced in Lecture \#9) - rejecting if this is not the case.
Suppose, now, that μ encodes a nondeterministic Turing machine M, input string ω for M, and a positive integer T.
2. Check whether $|\zeta| \leq|\mu|^{2}$ - rejecting if this is not the case.
3. Check whether ζ encodes a sequence of at most T moves that are consistent with M 's transition function, δ rejecting if this is not the case.
4. Apply the steps used by the "nondeterministic universal Turing machine", from Lecture \#9, to continue (after an encoding of a sequence of moves has been guessed) noting that the remaining steps are deterministic, and can be used to complete a validation algorithm.

An $\mathcal{N P}$-Complete Language

Claim \#2: Let $L \subseteq \Sigma^{\star}$, for an alphabet Σ, such that $L \in \mathcal{N} \mathcal{P}$. Then $L \preceq \mathrm{P}, \mathrm{M} A_{\text {TM }+1+\text { Time }}$.

Sketch of Proof:

- Since $L \in \mathcal{N P}$ there exists a nondeterministic Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

and non-negative integers c_{0}, c_{1} and d such that M decides L, and M 's computation tree for ω has depth at most $c_{1} \cdot|\omega|^{d}+c_{0}$ for every string $\omega \in \Sigma^{\star}$.

An $\mathcal{N} \mathcal{P}$-Complete Language

- Since M is a fixed nondeterministic Turing machine, its shortest encoded is a fixed string in $\Sigma_{\text {UTM }}^{\star}$.
- The function

$$
f: \Sigma^{\star} \rightarrow \Sigma_{\text {UTM }}^{\star}
$$

mapping each string $\omega \in \Sigma^{\star}$ to the encoding of M, ω (as an input for M) and the time bound $c_{1} \cdot|\omega|^{d}+c_{0}$, can be shown to be a polynomial-time many-one reduction from L to $A_{\text {NTM }+1+\text { Time }}$ - establishing that $L \preceq_{\mathrm{M}} A_{\text {NTM }+1+\text { Time }}$, as claimed.

An $\mathcal{N P}$-Complete Language

- It follows by Claim \#1, Claim \#2, and the definition of " $\mathcal{N P}$-complete" that the language $A_{\text {NTM }+ \text { Time }+1}$ is $\mathcal{N} \mathcal{P}$-complete.
- Unfortunately, this is not very helpful because it is not clear how one can use this information to show that any other languages are $\mathcal{N P}$-complete, too.
- Lectures \#10 and \#11 review results establishing the existence of a large collection of $\mathcal{N} \mathcal{P}$-complete languages.
- This makes the process to establish the $\mathcal{N} \mathcal{P}$-completeness of a given language - described next - easier to use.

Proving $\mathcal{N} \mathcal{P}$-Completeness of a Given Language

Suppose we want to prove that a given language $L \subseteq \Sigma^{\star}$ is $\mathcal{N} \mathcal{P}$-complete. Then the following process can be used to do this - noting that steps \#1 and \#2, below, can be carried out in either order.

1. Prove that $L \in \mathcal{N P}$. This is, generally, accomplished by describing a certificate for a string in L, along with a polynomial-time verification algorithm for this language and set of certificates.
2. Prove that L is $\mathcal{N} \mathcal{P}$-hard - by choosing some other language $\widehat{L} \subseteq \widehat{\Sigma}^{\star}$, that is already known to be $\mathcal{N} \mathcal{P}$-complete, and then describing (and proving correctness of) a polynomial-time many-one reduction from \hat{L} to L.
It will then follow, by Corollary \#16 in Lecture \#7, that L is $\mathcal{N} \mathcal{P}$-complete.

Proving $\mathcal{N} \mathcal{P}$-Completeness of a Given Language

Note:

- Both of these steps require that an algorithm be presented and proved to be both correct and asymptotically efficient. Refinement - a process where you describe, and establish the correctness and efficiency of a "high-level" algorithm, and then gradually add detail in a correctnessand efficiency-preserving way - will often be useful.
- The choice of the $\mathcal{N} \mathcal{P}$-complete language \widehat{L}, used in Step \#2, can be very important! Describing a polynomial-time many-one reduction, from this language to L, can be significantly simpler for some choices of this language than it is for others.

The Complexity Class co- $\mathcal{N} \mathcal{P}$

Recall that if $L \subseteq \Sigma^{\star}$ then the complement of L is the language

$$
L^{C}=\left\{\omega \in \Sigma^{\star} \mid \omega \notin L\right\} .
$$

Some references denote this by \bar{L} instead of L^{C}.
It is easy to prove that $L \in \mathcal{P}$ if and only $L^{C} \in \mathcal{P}$, for every language $L \subseteq \Sigma^{\star}$.

It is not known whether this is also true for $\mathcal{N P}$, but most computer scientists (with an opinion) believe that it is not.

The Complexity Class co-NP

Definition: co-NP $=\left\{L^{C} \mid L \in \mathcal{N P}\right\}$.
Conjecture: $\mathcal{N P} \neq \operatorname{co}-\mathcal{N P}$.
The following is easy to prove.
Claim \#3:
(a) $\mathcal{P} \subseteq \mathcal{N P} \cap \operatorname{co}-\mathcal{N} \mathcal{P}$.
(b) If $\mathcal{P}=\mathcal{N} \mathcal{P}$ then $\mathcal{N} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P}$.
(c) If either $\mathcal{N P} \subseteq \operatorname{co}-\mathcal{N P}$ or co- $\mathcal{N P} \subseteq \mathcal{N P}$ then

$$
\mathcal{N P}=\operatorname{co}-\mathcal{N P} .
$$

It is not known whether $\mathcal{P}=\mathcal{N} \mathcal{P} \cap \operatorname{co}-\mathcal{N P}$.

A Useful Closure Property

The following is also easy to prove.

Claim \#4:

(a) The complexity class $\mathcal{N P}$ is closed under polynomial-time many-one reductions.
(b) For all languages $L_{1} \subseteq \Sigma_{1}^{\star}$ and $L_{2} \subseteq \Sigma_{2}^{\star}$, if $L_{1} \preceq_{P, M} L_{2}$ then $L_{1}^{C} \preceq_{P, M} L_{2}^{C}$.
(c) The complexity class co- $\mathcal{N P}$ is closed under polynomial-time many-one reductions.

The Complexity Class co- $\mathcal{N} \mathcal{P}$

Definition: A language $L \subseteq \Sigma^{\star}$ is co- $\mathcal{N} \mathcal{P}$-hard (respectively co- $\mathcal{N} \mathcal{P}$-complete) if L is hard (respectively, complete) for co- $\mathcal{N} \mathcal{P}$ with respect to polynomial-time many-one reductions.

Claim \#5: For every language $L \subseteq \Sigma^{\star}$,
(a) L is $\mathcal{N P}$-hard if and only if L^{C} is co- $\mathcal{N} \mathcal{P}$-hard.
(b) L is $\mathcal{N P}$-complete if and only if L^{C} is co- $\mathcal{N} \mathcal{P}$-complete.

It follows from this that, as languages are proved to be $\mathcal{N} \mathcal{P}$-complete, related languages are established as co- $\mathcal{N} \mathcal{P}$-complete with no extra work.

The Complexity Class co-NP

As previously noted it is conjectured - but known - that polynomial-time oracle reductions and polynomial-time many-one reductions are not the same. As the following result shows, this conjecture is related to conjecture about the relationship between $\mathcal{N P}$ and co- $\mathcal{N} \mathcal{P}$ that is given above.
Claim \#6: If $\mathcal{N} \mathcal{P} \neq \operatorname{co}-\mathcal{N} \mathcal{P}$ then there exist languages
$L_{1}, L_{2} \subseteq \Sigma^{\star}$ (for an alphabet Σ) such that $L_{1} \preceq_{\mathrm{P}, \mathrm{o}} L_{2}$, but
$L_{1} \not K_{\mathrm{P}, \mathrm{M}} L_{2}$.

