N P-Completness co-NP

Computer Science 511
Nondeterministic Time: More about N"P— and co-NP

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #10

Goals for Today

Goals for Today
¢ Review fundamentals of the theory of N’P-completeness.

¢ Introduce the complexity class co-N"P — along with a
conjecture about that, and a consequence of that
conjecture.

N P-Completness

NP-Completeness

e Definition: A language L C ¥* is N"P-Hard (or,
respectively N“P-Complete) it is hard (respectively,
complete) for NP with respect to polynomial-time
many-one reductions.

¢ One can also consider languages that are hard
(respectively, complete) with respect to polynomial-time
oracle reductions. A reason, why the first definitions of
hardness (respectively, completeness) are generally
preferred, will be given later on in these notes.

N P-Completness

An N'P-Complete Language

Consider the language Antwm.i1+Time — consisting of encodings
of nondeterministic multi-tape Turing machines M, input
strings w for M, and positive integers T (encoded in unary)
such that M accepts w using at most T steps — introduced in
Lecture #9.

Claim #1: ANTM+I+Time e NP.

N P-Completness

An N'P-Complete Language

How This Can Be Proved: Consider a verification algorithm
such that

e The certificate alphabet is the same as the input alphabet,
Tyt

* A certificate for a string p € AnTM41+Time, €Ncoding a
nondeterministic Turing machine

M = (Qv DI I8 57 Qo Qaccept; Qreject)a

input string w € ¥*, and positive integer T, is an encoding ¢
of a sequence of t moves, where t < T, that are consistent
with M’s transition function §, going from the initial
configuration for w to an accepting configuration. Such a
certificate exists, and |¢| < |u/|? for every such certificate ¢.

N P-Completness

An N'P-Complete Language

e Given an input that includes a string i (such that we wish
to check whether i € AntmasTime) @nd a string ¢ (that
might be a certificate), a verification algorithm could
proceed as follows.

Check whether ;1 € LntmsisTime, for the language Lntmi+Time
introduced in Lecture #9) — rejecting if this is not the case.
Suppose, now, that ¢ encodes a nondeterministic Turing
machine M, input string w for M, and a positive integer T.

. Check whether [¢| < |u|?> — rejecting if this is not the case.
. Check whether ¢ encodes a sequence of at most T moves

that are consistent with M’s transition function, § —
rejecting if this is not the case.

. Apply the steps used by the “nondeterministic universal

Turing machine”, from Lecture #9, to continue (after an
encoding of a sequence of moves has been guessed) —
noting that the remaining steps are deterministic, and can
be used to complete a validation algorithm. O

N P-Completness

An N'P-Complete Language

Claim #2: Let L C Y*, for an alphabet X, such that L € N'P.
Then L <p m ATM+1+Time-

Sketch of Proof:
e Since L € NP there exists a nondeterministic Turing
machine
M=(Q,%,T,6,qo, Qaccept; C7reje<:t)
and non-negative integers ¢y, ¢y and d such that M

decides L, and M’s computation tree for w has depth at
most ¢; - |w|? + ¢ for every string w € X*.

N P-Completness

An N'P-Complete Language

e Since M is a fixed nondeterministic Turing machine, its
shortest encoded is a fixed string in X7y,

e The function
f . Z* — ZGTM

mapping each string w € * to the encoding of M, w (as an
input for M) and the time bound ¢; - |w|? + ¢, can be
shown to be a polynomial-time many-one reduction from L
to ANTM+1+Time — establishing that L <m AnTMe+1+Time, @S
claimed. O

N P-Completness

An N'P-Complete Language

e |t follows by Claim #1, Claim #2, and the definition of
“N'P-complete” that the language Antwm + Time + 1 IS
NP-complete.

e Unfortunately, this is not very helpful because it is not clear
how one can use this information to show that any other
languages are N'P-complete, too.

e Lectures #10 and #11 review results establishing the
existence of a large collection of N"P-complete languages.

e This makes the process to establish the
NP-completeness of a given language — described next
— easier to use.

N P-Completness

Proving N"P-Completeness of a Given Language

Suppose we want to prove that a given language L C X* is
NP-complete. Then the following process can be used to do
this — noting that steps #1 and #2, below, can be carried out in
either order.

1. Prove that L € N'P. This is, generally, accomplished by
describing a certificate for a string in L, along with a
polynomial-time verification algorithm for this language
and set of certificates.

2. Prove that L is N'P-hard — by choosing some other
language LC ¥, that is already known to be
NP-complete, and then describing (and proving
correctness of) a polynomial-time many-one reduction
from Lto L.

It will then follow, by Corollary #16 in Lecture #7, that L is
NP-complete.

N P-Completness

Proving N"P-Completeness of a Given Language

Note:

¢ Both of these steps require that an algorithm be presented
and proved to be both correct and asymptotically efficient.
Refinement — a process where you describe, and
establish the correctness and efficiency of a “high-level”
algorithm, and then gradually add detail in a correctness-
and efficiency-preserving way — will often be useful.

¢ The choice of the A'P-complete language Z, used in
Step #2, can be very important! Describing a
polynomial-time many-one reduction, from this language
to L, can be significantly simpler for some choices of this
language than it is for others.

co-NP

The Complexity Class co-NP

Recall that if L C X* then the complement of L is the language
LC={weX |w¢l)

Some references denote this by L instead of L°.

It is easy to prove that L € P if and only LC € P, for every
language L C X*.

It is not known whether this is also true for NP, but most
computer scientists (with an opinion) believe that it is not.

The Complexity Class co-NP

Definition: co-N'P = {L® | L € N'P}.
Conjecture: N'P # co-N'P.

The following is easy to prove.

Claim #3:
(@) P CNPNco-NP.
(b) If P = NP then NP = co-NP.

(c) If either NP C co-N'P or co-N'P C NP then
NP =co-NP.

It is not known whether P = NP N co-NP.

co-NP

A Useful Closure Property

The following is also easy to prove.

Claim #4:

(a) The complexity class NP is closed under polynomial-time
many-one reductions.

(b) Forall languages Ly € ¥ and Lo C 33, if L1 =<p m Lo then
LS <pm LS.

(c) The complexity class co-NP is closed under
polynomial-time many-one reductions.

co-NP

co-NP

The Complexity Class co-NP

Definition: A language L C ¥* is co-N"P-hard (respectively
co-N"P-complete) if L is hard (respectively, complete) for
co-N'P with respect to polynomial-time many-one reductions.

Claim #5: For every language L C ¥*,
(a) Lis N'P-hard if and only if LC is co-N"P-hard.
(b) Lis N'P-complete if and only if LC is co-N"P-complete.

It follows from this that, as languages are proved to be
NP-complete, related languages are established as
co-N'P-complete with no extra work.

co-NP

The Complexity Class co-NP

As previously noted it is conjectured — but known — that
polynomial-time oracle reductions and polynomial-time
many-one reductions are not the same. As the following result
shows, this conjecture is related to conjecture about the
relationship between NP and co-AP that is given above.

Claim #6: If N'P # co-N'P then there exist languages
Ly, L, C ¥* (for an alphabet X) such that Ly <p o Lo, but
Ly Zp m Lo

	NP-Completness
	co-NP

