
NP-Completness co-NP

Computer Science 511
Nondeterministic Time: More about NP— and co-NP

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #10

NP-Completness co-NP

Goals for Today

Goals for Today

• Review fundamentals of the theory of NP-completeness.

• Introduce the complexity class co-NP — along with a

conjecture about that, and a consequence of that

conjecture.

NP-Completness co-NP

NP-Completeness

• Definition: A language L ⊆ Σ⋆ is NP-Hard (or,

respectively NP-Complete) it is hard (respectively,

complete) for NP with respect to polynomial-time

many-one reductions.

• One can also consider languages that are hard

(respectively, complete) with respect to polynomial-time

oracle reductions. A reason, why the first definitions of

hardness (respectively, completeness) are generally

preferred, will be given later on in these notes.

NP-Completness co-NP

An NP-Complete Language

Consider the language ANTM+I+Time — consisting of encodings

of nondeterministic multi-tape Turing machines M, input

strings ω for M, and positive integers T (encoded in unary)

such that M accepts ω using at most T steps — introduced in

Lecture #9.

Claim #1: ANTM+I+Time ∈ NP.

NP-Completness co-NP

An NP-Complete Language

How This Can Be Proved: Consider a verification algorithm

such that

• The certificate alphabet is the same as the input alphabet,

ΣUTM.

• A certificate for a string µ ∈ ANTM+I+Time, encoding a

nondeterministic Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject),

input string ω ∈ Σ⋆, and positive integer T , is an encoding ζ
of a sequence of t moves, where t ≤ T , that are consistent

with M ’s transition function δ, going from the initial

configuration for ω to an accepting configuration. Such a

certificate exists, and |ζ| ≤ |µ|2 for every such certificate ζ.

NP-Completness co-NP

An NP-Complete Language

• Given an input that includes a string µ (such that we wish

to check whether µ ∈ ANTM+I+Time) and a string ζ (that

might be a certificate), a verification algorithm could

proceed as follows.

1. Check whether µ ∈ LNTM+I+Time, for the language LNTM+I+Time

introduced in Lecture #9) — rejecting if this is not the case.

Suppose, now, that µ encodes a nondeterministic Turing

machine M, input string ω for M, and a positive integer T .

2. Check whether |ζ| ≤ |µ|2 — rejecting if this is not the case.

3. Check whether ζ encodes a sequence of at most T moves

that are consistent with M ’s transition function, δ —
rejecting if this is not the case.

4. Apply the steps used by the “nondeterministic universal
Turing machine”, from Lecture #9, to continue (after an

encoding of a sequence of moves has been guessed) —
noting that the remaining steps are deterministic, and can

be used to complete a validation algorithm.

NP-Completness co-NP

An NP-Complete Language

Claim #2: Let L ⊆ Σ⋆, for an alphabet Σ, such that L ∈ NP .

Then L �P, M ATM+I+Time.

Sketch of Proof:

• Since L ∈ NP there exists a nondeterministic Turing

machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

and non-negative integers c0, c1 and d such that M

decides L, and M ’s computation tree for ω has depth at

most c1 · |ω|d + c0 for every string ω ∈ Σ⋆.

NP-Completness co-NP

An NP-Complete Language

• Since M is a fixed nondeterministic Turing machine, its

shortest encoded is a fixed string in Σ⋆

UTM.

• The function

f : Σ⋆ → Σ⋆

UTM

mapping each string ω ∈ Σ⋆ to the encoding of M, ω (as an

input for M) and the time bound c1 · |ω|d + c0, can be

shown to be a polynomial-time many-one reduction from L

to ANTM+I+Time — establishing that L �M ANTM+I+Time, as

claimed.

NP-Completness co-NP

An NP-Complete Language

• It follows by Claim #1, Claim #2, and the definition of

“NP-complete” that the language ANTM + Time + I is

NP-complete.

• Unfortunately, this is not very helpful because it is not clear

how one can use this information to show that any other

languages are NP-complete, too.

• Lectures #10 and #11 review results establishing the

existence of a large collection of NP-complete languages.

• This makes the process to establish the

NP-completeness of a given language — described next

— easier to use.

NP-Completness co-NP

Proving NP-Completeness of a Given Language

Suppose we want to prove that a given language L ⊆ Σ⋆ is

NP-complete. Then the following process can be used to do

this — noting that steps #1 and #2, below, can be carried out in

either order.

1. Prove that L ∈ NP. This is, generally, accomplished by

describing a certificate for a string in L, along with a

polynomial-time verification algorithm for this language

and set of certificates.

2. Prove that L is NP-hard — by choosing some other

language L̂ ⊆ Σ̂⋆, that is already known to be

NP-complete, and then describing (and proving

correctness of) a polynomial-time many-one reduction

from L̂ to L.

It will then follow, by Corollary #16 in Lecture #7, that L is

NP-complete.

NP-Completness co-NP

Proving NP-Completeness of a Given Language

Note:

• Both of these steps require that an algorithm be presented

and proved to be both correct and asymptotically efficient.

Refinement — a process where you describe, and

establish the correctness and efficiency of a “high-level”

algorithm, and then gradually add detail in a correctness-

and efficiency-preserving way — will often be useful.

• The choice of the NP-complete language L̂, used in

Step #2, can be very important! Describing a

polynomial-time many-one reduction, from this language

to L, can be significantly simpler for some choices of this

language than it is for others.

NP-Completness co-NP

The Complexity Class co-NP

Recall that if L ⊆ Σ⋆ then the complement of L is the language

LC = {ω ∈ Σ⋆ | ω /∈ L}.

Some references denote this by L instead of LC.

It is easy to prove that L ∈ P if and only LC ∈ P, for every

language L ⊆ Σ⋆.

It is not known whether this is also true for NP, but most

computer scientists (with an opinion) believe that it is not.

NP-Completness co-NP

The Complexity Class co-NP

Definition: co-NP = {LC | L ∈ NP}.

Conjecture: NP 6= co-NP .

The following is easy to prove.

Claim #3:

(a) P ⊆ NP ∩ co-NP .

(b) If P = NP then NP = co-NP .

(c) If either NP ⊆ co-NP or co-NP ⊆ NP then

NP = co-NP .

It is not known whether P = NP ∩ co-NP.

NP-Completness co-NP

A Useful Closure Property

The following is also easy to prove.

Claim #4:

(a) The complexity class NP is closed under polynomial-time

many-one reductions.

(b) For all languages L1 ⊆ Σ⋆

1 and L2 ⊆ Σ⋆

2, if L1 �P, M L2 then

LC
1 �P, M LC

2 .

(c) The complexity class co-NP is closed under

polynomial-time many-one reductions.

NP-Completness co-NP

The Complexity Class co-NP

Definition: A language L ⊆ Σ⋆ is co-NP-hard (respectively

co-NP-complete) if L is hard (respectively, complete) for

co-NP with respect to polynomial-time many-one reductions.

Claim #5: For every language L ⊆ Σ⋆,

(a) L is NP-hard if and only if LC is co-NP-hard.

(b) L is NP-complete if and only if LC is co-NP-complete.

It follows from this that, as languages are proved to be

NP-complete, related languages are established as

co-NP-complete with no extra work.

NP-Completness co-NP

The Complexity Class co-NP

As previously noted it is conjectured — but known — that

polynomial-time oracle reductions and polynomial-time

many-one reductions are not the same. As the following result

shows, this conjecture is related to conjecture about the

relationship between NP and co-NP that is given above.

Claim #6: If NP 6= co-NP then there exist languages

L1,L2 ⊆ Σ⋆ (for an alphabet Σ) such that L1 �P, O L2, but

L1 6�P, M L2.

	NP-Completness
	co-NP

