Lecture #10: Nondeterministic Time — More about \mathcal{NP} , and co- \mathcal{NP} Exercises and Review

Additional Exercises

1. Prove the following claim, from the lecture notes.

Claim 3.

- (a) $\mathcal{P} \subseteq \mathcal{NP} \cap \text{co-}\mathcal{NP}$.
- (b) If $\mathcal{P} = \mathcal{NP}$ then $\mathcal{NP} = \text{co-}\mathcal{NP}$.
- (c) If either $\mathcal{NP} \subseteq \text{co-}\mathcal{NP}$ or $\text{co-}\mathcal{NP} \subseteq \mathcal{NP}$ then $\mathcal{NP} = \text{co-}\mathcal{NP}$.
- Using results that are either proved in the lecture notes for this lecture, or during the lecture presentation, prove that the complexity class co-NP is closed under polynomialtime many-one reductions.
- 3. Prove that it $\mathcal{NP} \neq \mathcal{NP}$ then there exist languages $L_1, L_2 \subseteq \Sigma^*$, for some alphabet Σ , such that $L_1 \preceq_{\mathsf{P}, \mathsf{O}} L_2$ but $L_1 \not \preceq_{\mathsf{P}, \mathsf{M}} L_2$.
- Let Σ = Σ_{UTM} ∪ { # }, Σ̃ = {Σ} ∪ {♠} = Σ_{UTM} ∪ { #, ♠}, and let L ⊆ Σ* be the language of the polynomial-time verification algorithm for the language A_{NTM+I+Time}, described in the lecture notes so that L ∈ P.

As a writing exercise (and practice for assignments and tests), use the information about this, from the lecture presentation, to prove that the associated language, $\tilde{L} \subseteq \tilde{\Sigma}^*$, is \mathcal{NP} -complete.

Questions for Review

- 1. Name (and describe) a language that is known to be \mathcal{NP} -complete.
- 2. Describe a process that can (in principle) be used to prove that a language $L \subseteq \Sigma^*$ is \mathcal{NP} -complete, if you already know of at least one other \mathcal{NP} -complete language $\widehat{L} \subseteq \widehat{\Sigma}^*$.
- 3. What is the *complement* of a language $L \subseteq \Sigma^*$?
- 4. What is the complexity class co-NP?
- 5. What does it mean for a language to be *co-NP-hard*? What does it mean for a language to be *co-NP-complete*?
- 6. Explain why the set of co- \mathcal{NP} -complete languages you know about also grows, as more \mathcal{NP} -complete languages are identified.