Lecture #10: Nondeterministic Time — More about \mathcal{NP} , and co- \mathcal{NP} Lecture Presentation

The following result was stated as "Claim #4(a)" in the notes for this lecture.

Claim. The complexity class \mathcal{NP} is closed under polynomial-time many-one reductions.

Proof of This Claim:

Consider, once again, the language $A_{\text{NTM+I+Time}} \subseteq \Sigma_{\text{UTM}}^{\star}$ of encodings of nondeterministic multi-tape Turing machines

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}),$$

input strings $\omega \in \Sigma^*$, and positive integers T (encoded in unary) such that M accepts ω using at most T steps. It is proved, in the lecture notes, that this language is \mathcal{NP} -complete.

Consider, as well, the language $NA_{NTM+I+Time} \subseteq \Sigma_{UTM}^{\star}$ of encodings of nondeterministic multi-tape Turing machines

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}),$$

input strings $\omega \in \Sigma^*$. and positive integers T (encoded in unary) such that M does not accept ω using at most T steps — that is, there is no accepting configuration in the computation tree for ω (and the nondeterministic Turing machine) whose distance from the root is at most T.

How are These Languages Related? Is One the Complement of the Other?

Claim. The language NA_{NTM+I+Time} is co- \mathcal{NP} -complete.

Proof:

Finally, let $L \subseteq \Sigma^*$, where Σ is an alphabet such that the symbol " \blacklozenge " does not belong to Σ and suppose that $L \in \mathcal{P}$ — but $L \neq \emptyset$ and $L \neq \Sigma^*$, so that there exist strings $\omega_{no}, \omega_{yes} \in \Sigma^*$ such that $\omega_{no} \notin L$ and $\omega_{yes} \in L$.

Now consider the alphabet $\widetilde{\Sigma} = \Sigma \cup \{\clubsuit\},$ and let

$$\widetilde{L} = \{ \mu \in \widetilde{\Sigma}^{\star} \mid \mu = \omega_{\ell} \blacklozenge^{T} \text{ for a string } \omega_{\ell} \in \Sigma^{\star} \text{ and a positive integer } T, \text{ for which} \\ \text{there exists a string } \omega_{r} \in \Sigma^{\star}, \text{ such that } |\omega_{r}| \leq T \text{ and } \omega_{\ell} \cdot \omega_{r} \in L \}.$$

Prove that $\widetilde{L} \in \mathcal{NP}$.

Now let $\Sigma = \Sigma_{\text{UTM}} \cup \{\hat{\#}\}^1$ and suppose that $L \subseteq \Sigma^*$ is the language of strings

$$\mu \widehat{\#} \nu$$

where $\mu \in A_{\text{NTM+I+Time}}$, and $\nu \in \Sigma_{\text{UTM}}^{\star}$ is a short certificate for μ as described in the lecture notes (so that $|\nu| \leq |\mu|^2$). Then $L \in \mathcal{P}$, since L is the language of the polynomial-time verification algorithm for $A_{\text{NTM+I+Time}}$ that is described in the lecture notes.

Prove that — if L is the above language and $\widetilde{L} \subseteq \widetilde{\Sigma}^*$, where $\widetilde{\Sigma} = \Sigma \cup \{ \blacklozenge \} = \Sigma_{\text{UTM}} \cup \{ \widehat{\#}, \blacklozenge \}$ and \widetilde{L} is the language obtained from L by the construction that has now been described — then \widetilde{L} is \mathcal{NP} -complete.

OK, OK, OK... The lecture notes suggest that we only know **one** \mathcal{NP} -complete language, and the completion of this exercise supplies a second one. (This exercise was added *after* the lecture notes had been completed.)

This does not really change (or undermine) the point now being made: The \mathcal{NP} -complete languages we know about are highly artificial, and ask questions that are about computations by nondeterministic Turing machines. They do not provide very much evidence that *other*, more natural, \mathcal{NP} -complete languages will be found (so that this "theory" will be of any practical use).

¹Since the symbol "#" already belongs to Σ_{UTM} , the separator, used in the definition of a polynomial-time verification algorithm, is " $\hat{\#}$ ", so that it is a new symbol.