Lecture \#10: Nondeterministic Time - More about $\mathcal{N P}$, and co-NP
 Lecture Presentation

The following result was stated as "Claim \#4(a)" in the notes for this lecture.

Claim. The complexity class $\mathcal{N P}$ is closed under polynomial-time many-one reductions. Proof of This Claim:

Consider, once again, the language $A_{\text {NTM }+1+\text { Time }} \subseteq \Sigma_{U T M}^{*}$ of encodings of nondeterministic multi-tape Turing machines

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

input strings $\omega \in \Sigma^{\star}$, and positive integers T (encoded in unary) such that M accepts ω using at most T steps. It is proved, in the lecture notes, that this language is $\mathcal{N P}$-complete.

Consider, as well, the language $N A_{N T M+1+T i m e} \subseteq \Sigma_{\text {UTM }}^{\star}$ of encodings of nondeterministic multitape Turing machines

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right),
$$

input strings $\omega \in \Sigma^{\star}$. and positive integers T (encoded in unary) such that M does not accept ω using at most T steps - that is, there is no accepting configuration in the computation tree for ω (and the nondeterministic Turing machine) whose distance from the root is at most T.

How are These Languages Related? Is One the Complement of the Other?

Claim. The language $N A_{N T M+1+T i m e}$ is co- $\mathcal{N P}$-complete.
Proof:

Finally, let $L \subseteq \Sigma^{\star}$, where Σ is an alphabet such that the symbol " $\Phi^{\text {" }}$ does not belong to Σ and suppose that $L \in \mathcal{P}$ - but $L \neq \emptyset$ and $L \neq \Sigma^{\star}$, so that there exist strings $\omega_{\mathrm{no}}, \omega_{\text {yes }} \in \Sigma^{\star}$ such that $\omega_{\text {no }} \notin L$ and $\omega_{\text {yes }} \in L$.
Now consider the alphabet $\widetilde{\Sigma}=\Sigma \cup\{\boldsymbol{\phi}\}$, and let

$$
\begin{aligned}
& \widetilde{L}=\left\{\mu \in \widetilde{\Sigma}^{\star} \mid \mu=\omega_{\ell} \boldsymbol{\phi}^{T} \text { for a string } \omega_{\ell} \in \Sigma^{\star} \text { and a positive integer } T,\right. \text { for which } \\
& \text { there exists a string } \left.\omega_{r} \in \Sigma^{\star} \text {, such that }\left|\omega_{r}\right| \leq T \text { and } \omega_{\ell} \cdot \omega_{r} \in L\right\} .
\end{aligned}
$$

Prove that $\widetilde{L} \in \mathcal{N P}$.

Now let $\Sigma=\Sigma_{\text {UTM }} \cup\left\{\right.$ \# 1 and suppose that $L \subseteq \Sigma^{\star}$ is the language of strings

$$
\mu \widehat{\#} \nu
$$

where $\mu \in A_{\text {NTM }+1+\text { Time }}$, and $\nu \in \Sigma_{\text {UTM }}^{\star}$ is a short certificate for μ as described in the lecture notes (so that $|\nu| \leq|\mu|^{2}$). Then $L \in \mathcal{P}$, since L is the language of the polynomial-time verification algorithm for $A_{\text {NTM }+1+\text { Time }}$ that is described in the lecture notes.
Prove that - if L is the above language and $\widetilde{L} \subseteq \widetilde{\Sigma}^{\star}$, where $\widetilde{\Sigma}=\Sigma \cup\{\boldsymbol{\phi}\}=\Sigma_{\text {UTM }} \cup\{\widehat{\#}, \boldsymbol{\phi}\}$ and \widetilde{L} is the language obtained from L by the construction that has now been described then \widetilde{L} is $\mathcal{N} \mathcal{P}$-complete.

OK, OK, OK... The lecture notes suggest that we only know one $\mathcal{N P} \mathcal{P}$-complete language, and the completion of this exercise supplies a second one. (This exercise was added after the lecture notes had been completed.)
This does not really change (or undermine) the point now being made: The $\mathcal{N} \mathcal{P}$-complete languages we know about are highly artificial, and ask questions that are about computations by nondeterministic Turing machines. They do not provide very much evidence that other, more natural, $\mathcal{N} \mathcal{P}$-complete languages will be found (so that this "theory" will be of any practical use).

[^0]
[^0]: ${ }^{1}$ Since the symbol "\#" already belongs to Σ UTм, the separator, used in the definition of a polynomial-time verification algorithm, is " $\widehat{\#}$ ", so that it is a new symbol.

