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Goals for Today

• Introduce a “Boolean Formula Satisfiability” Problem and

prove that its associated language, LFSAT, is NP-complete.

• The proof in these notes is not (quite) the proof contained

in Cook’s paper. It is based on the proof given as the proof

of Theorem 7.37 in the third edition of Michael Sipser’s

text, Introduction to the Theory of Computation.
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Boolean Formulas: Definition

Consider a set

V = {x0, x1, x2, . . . }

of Boolean variables — each of which can have value true (T)

or false (F).

Definition: A Boolean formula over these variables is defined

using the following rules.

1. xi is a Boolean formula, for every nonnegative integer i .

2. If F is a Boolean formula then ¬F is also a Boolean

formula.

3. If F1,F2, . . . ,Fk are Boolean formulas, for an integer
k ≥ 2, then the following are Boolean formulas as well:

(a) (F1 ∧ F2 ∧ · · · ∧ Fk )
(b) (F1 ∨ F2 ∨ · · · ∨ Fk )
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Boolean Formulas:

Values under Truth Assignments

A partial truth assignment is a partial function

ϕ : V → {T,F}

— so ϕ(xi ) is either T, F, or “undefined” for every natural

number i .

A truth assignment (or “total truth assignment”) is a partial

truth assignment ϕ such that either ϕ(xi ) = T or ϕ(xi ) = F for

every natural number n. That is, ϕ(xi ) is never “undefined”.
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Boolean Formulas:

Values under Truth Assignments

Truth values for Boolean formulas under partial truth

assignments can be inductively defined: Let ϕ : V → {T,F} be

a partial truth assignment and let F be a Boolean formula.

1. If Fi is the Boolean formula xi , for a natural number i , then

ϕ(F) = ϕ(xi ).

2. If F = ¬F̂ for a Boolean formula ¬F̂ then ϕ(F) is

undefined if ϕ(F̂ ) is undefined, and ϕ(F) = ¬ϕ(F̂ )
otherwise.
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Boolean Formulas:

Values under Truth Assignments

3. Let k be an integer such that k ≥ 2 and let F̂1, F̂2, . . . , F̂k

be Boolean formulas.

(a) Suppose that F = (F̂1 ∧ F̂2 ∧ · · · ∧ F̂k ). If ϕ(F̂i) is
undefined, for any integer i such that 1 ≤ i ≤ k , then ϕ(F)
is undefined as well. Otherwise

ϕ(F) = (ϕ(F̂1) ∧ ϕ(F̂2) ∧ · · · ∧ ϕ(F̂k )).

(b) Suppose that F = (F̂1 ∨ F̂2 ∨ · · · ∨ F̂k ). If ϕ(F̂i) is
undefined, for any integer i such that 1 ≤ i ≤ k , then ϕ(F)
is undefined as well. Otherwise

ϕ(F) = (ϕ(F̂1) ∨ ϕ(F̂2) ∨ · · · ∨ ϕ(F̂k )).
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Boolean Formulas:

Values under Truth Assignments

Definition: A Boolean formula F is satisfiable if there exists a

truth assignment1 ϕ : V → {T,F} such that ϕ(F) = T.

We say that F is satisfied under a truth assignment

ϕ : V → {T,F) if ϕ(F) = T.

Note: These definitions, concerning “satisfiability”, should be

the same as in any previous courses in mathematics or logic,

which students have taken, in which Boolean formulas are

defined — but they are possibly presented somewhat more

formally, here.

1Partial truth assignments can be used instead of (total) truth assignments

in this definition without changing the set of “satisfiable” Boolean formulas.
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Boolean Formulas: Encodings

Let

ΣF = {x,0,1,2,3,4,5,6,7,8,9,∧,∨,¬,(,)}.

An encoding e(F) as a string in Σ⋆
F can also be inductively

defined.

1. For every nonnegative integer i the encoding e(xi ) of the

Boolean variable xi is the string beginning with the

symbol x, followed by the unpadded decimal

representation of i . Thus if F = xi then e(F) is this string,

e(xi), as well.

2. If F = ¬F̂ for a Boolean formula F̂ then e(F) is the

symbol ¬ ∈ ΣF followed by the encoding e(F̂) of F̂ .
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Boolean Formulas: Encodings

3. Suppose that k is an integer such that k ≥ 2 and that

F̂1, F̂2, . . . , F̂k are Boolean formulas.

(a) If F = (F̂1 ∧ F̂2 ∧ · · · ∧ F̂k) then e(F) is the string consisting

of the encodings e(F̂1), e(F̂2), . . . , e(F̂k ), separated by

copies of the symbol ∧ ∈ ΣF , and enclosed by brackets
(that is, starting with “(” and ending with “)”).

(b) If F = (F̂1 ∨ F̂2 ∨ · · · ∨ F̂k) then e(F) is the string consisting

of the encodings e(F̂1), e(F̂2), . . . , e(F̂k ), separated by

copies of the symbol ∨ ∈ ΣF , and enclosed by brackets
(that is, starting with “(” and ending with “)”).
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Boolean Formulas: Encodings

In other words, e(F) is produced from F by replacing each

Boolean variable xi with the string e(xi ) ∈ Σ⋆
F that encodes it,

and encoding punctuation (“(” and “)”) and operators (“¬”, “∨”

and “¬”) by the corresponding symbols in ΣF .
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Boolean Formulas:

Languages of Interest

• Let LF ⊆ Σ⋆
F be the set of encodings of Boolean formulas,

as defined above.

• Let LFSAT be the set of encodings of satisfiable Boolean

formulas, as defined above.
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LF ∈ P

Claim #1: LF ∈ P.

How To Prove This: Consider a deterministic Turing machine

that begins by sweeping over its input string (while copying it

onto another tape), replacing each encoding of a Boolean

variable that is seen by a single symbol, “F”.

Repeatedly replacing substrings with one of the forms

• ¬F

• (F ∧ F ∧ · · · ∧ F)

• (F ∨ F ∨ · · · ∨ F)

with F, one eventually obtains a string with length one — F — if

ω ∈ LF, and the input can be accepted. If ω /∈ LF then this

process fails (in one of several predictable ways) and the input

can be rejected instead.
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LF ∈ P

• While it might seem plausible that a Turing machine, that

implements this, would decide the language LF, it might not

be clear how to prove this.

• The supplement for this lecture includes more information

about how one can prove that this Turing machine would

decide the language LF, using a number of steps that is at

most quadratic in the length of the input string in the worst

case — implying that LF ∈ P.
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LFSAT ∈ NP

Claim #2: LFSAT ∈ NP .

How To Prove This: A polynomial-time verification algorithm for

this language should be described and analyzed.

• If ω ∈ Σ⋆
F is an encoding of a satisfiable Boolean formula F

(so that ω ∈ LF) then a certificate for ω will be an encoding

of a truth assignment ϕ : V → {T,F} that satisfies F — that

is, such that ϕ(F) = T.

• Truth assignments will be encoded using a certificate

alphabet

ΣC = {x,0,1,2,3,4,5,6,7,8,9,{,},,}

including the symbols in ΣF used to encode Boolean

variables, set brackets (“{” and “}”), and a comma.
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LFSAT ∈ NP

• Suppose ϕ : V → {T,F} is a truth assignment. Then — for

the purposes of this problem, ϕ will be encoded by a

string e(ϕ) ∈ Σ⋆
C , including the encoding ϕ(xi ) of every

variable xi ∈ V such that

• xi appears in F (so that its truth value is needed), and

• ϕ(xi) = T.

These encodings of variables should be separated by

commas, and enclosed by set brackets (so that e(ϕ)
begins with “{” and ends with “}”). The encodings of

variables xi , included here, should be sorted by increasing

index i .
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LFSAT ∈ NP

With a bit of work, each of the following can be proved.

• If ω ∈ Σ⋆
F is an coding of a satisfiable Boolean formula then

there exists a string µ ∈ Σ⋆
C that is a certificate for ω, as

described above, such that |µ| ≤ |ω|+ 2.

• Given a string ω ∈ LF — so that ω encodes a Boolean
formula F — and given a string ν ∈ Σ⋆

C such that
|ν| ≤ |ω|+ 2, it is possible to decide whether ν encodes a
set S of Boolean variables such that

• each Boolean variable xi in S appears in F , and
• the encodings of variables, in S, are sorted by increasing

index,

using a deterministic Turing machine, using a number of

moves that is at most polynomial in |ω|.

Proving these claims is left as an exercise.
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LFSAT ∈ NP

Consider a deterministic Turing machine with input alphabet

Σ̂ = ΣF ∪ ΣC ∪ {#} that implements an algorithm with the

following major steps.

1. Reject if the input string does not begin with a string with

the form ω#, where ω ∈ LF, copying ω onto the second

tape otherwise. Let F be the Boolean formula encoded

by F if the input has not been rejected.

2. Reject if the rest of the input string is not a string in Σ⋆
C

with length at most |ω|+ 2 that encodes a truth assignment

ϕ : V → {T,F}.

3. Compute the truth value of F under ϕ. Accept if ϕ(F) = T,

and reject otherwise.
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LFSAT ∈ NP

• With a bit of work this can be shown to be a verification

algorithm for LFSAT that can be implemented using a

deterministic Turing machine M, such that the number of

moves used by M is at most a polynomial function of |ω|
whenever the input has the form ω#ν where ω ∈ Σ⋆

F and

ν ∈ Σ⋆
C : See the supplemental material for details.

• It follows that LFSAT ∈ NP , as claimed.
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LFSAT is NP-Hard: Overview of Proof

Claim #3: LFSAT is NP-hard.

How To Prove This: Prove that L �P, M LFSAT for an arbitrarily

chosen language L ∈ NP.

• Let L ⊆ Σ⋆ such that L ∈ NP.

• Then there exists a nondeterministic one-tape Turing

machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

deciding L, and there exist positive integer constants d , c1

and c0 such that depth of the computation tree for M and ω
is at most

T (|ω|) = c1|ω|
d + c0,

for every string ω ∈ Σ⋆.
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LFSAT is NP-Hard: Overview of Proof

• A few simplifying assumptions2 can be made to make

the proof easier:

• Adding transitions to the rejecting state when needed (and

adding one to c0), it can be assumed that δ(q, σ) is not the

empty set whenever q ∈ Q \ {qaccept, qreject} and σ ∈ Γ.

• Renaming states as needed, it can be assumed that

Q ∩ Γ = ∅.

• Increasing c0 as needed, it can be assumed that c0 ≥ 4.

2These can, generally, be ignored when reading these notes. They will be

helpful for the proofs in the supplemental material.
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LFSAT is NP-Hard: Overview of Proof

• As described for deterministic Turing machines, a

configuration of the nondeterministic Turing machine M is

a string

µ1qµ2

where µ1, µ2 ∈ Γ⋆ and q ∈ Q.

• This represents the fact that the non-blank part of the tape

currently stores the string µ1µ2 — beginning with the

symbol stored at the leftmost cell — and that the tape head

currently points to the leftmost symbol in µ2 (or the leftmost

blank to the right of µ1, if µ2 = λ).
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LFSAT is NP-Hard: Overview of Proof

• If at most t moves have been made during the execution

of M on input ω, then M is in configuration

µ1qµ2,

then |µ1| ≤ t and — after removing trailing blanks — one

could require that |µ2| ≤ max(t , |ω|).

• For the construction in this proof, we will pad

configurations by adding blanks, to the right of µ2, in order

to ensure that

|µ1|+ |µ2| = T (|ω|) + 1 = c1|ω|
d + c0 + 1

for every configuration µ1qµ2 being considered.
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LFSAT is NP-Hard: Overview of Proof

Definition: Let ω ∈ Σ⋆ and let n = |ω|. A tableau for M on

input ω is a two-dimensional table with T (n) + 1 rows and

T (n) + 4 columns that satisfies the following properties.

(a) Each cell of the table stores a single symbol in Q ∪ Γ ∪ {#}.

(b) When read in order from left to right, the symbols in each

row form a string

#µ1qµ2#

where µ1, µ2 ∈ Γ⋆ and q ∈ Q — so that µ1qµ2 is a

(possible) configuration of M. The tableau has enough

columns for any configuration that might arise, during the

execution of M on input ω, to be represented, in a row of

the tableau, in this way.
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LFSAT is NP-Hard: Overview of Proof

(c) If

ω = σ1σ2 . . . σn

(where σ1, σ2, . . . , σn ∈ Σ) then the cells in the top row

(row #0) of the tableau store the string

#q0σ1σ2 . . . σn ⊔ ⊔ . . . ⊔ #

— the (padded) representation for the initial configuration

of M and the input string ω.
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LFSAT is NP-Hard: Overview of Proof

(d) For 0 ≤ i ≤ T (n)− 1, if ηi is the configuration represented
in row i and ηi+1 is the configuration represented in
row i + 1, then either

• ηi ⊢M ηi+1, that is, it is possible to go from configuration ηi to

configuration ηi+1 using a single move of M,

or
• it is not possible for M to move out of configuration ηi —

because this is either an accepting configuration or a

rejecting configuration — and ηi = ηi+1.

Thus the tableau gives a trace of one possible execution

of M on the input string ω — including enough rows for an entire

trace of execution (ending with either an accepting configuration

or a rejecting configuration in the bottom row) to be shown.
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LFSAT is NP-Hard: Overview of Proof

• A tableau is an accepting tableau if the configuration

represented by the bottom row is an accepting

configuration — that is, it is in state qaccept.

• Note: It follows that ω ∈ L if and only if there exists an

accepting configuration for M and ω.
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LFSAT is NP-Hard: Overview of Proof

The following could be done to complete the proof.

• A mapping from strings ω ∈ Σ⋆ to Boolean formulas Fω is

described — and it is argued that, for all ω ∈ Σ⋆, ω is in the

language L of M if and only if the corresponding Boolean

formula Fω is satisfiable.

• Reviewing information about the encodings of Boolean

formulas, as needed, this is used to define a total function

f : Σ⋆ → Σ⋆
F such that, for all ω ∈ Σ⋆, ω ∈ L if and only if

f (ω) ∈ LFSAT — because f (ω) is the encoding of the

Boolean formula, Fω, described above.
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LFSAT is NP-Hard: Overview of Proof

• Reviewing the definition of the Boolean formula Fω and the

above function f as needed, it is argued that there exists a

deterministic Turing machine Mf that computes the

function f , using a number of moves that is at most a

polynomial function of the length of its input.

• Thus f is a polynomial-time many-one reduction from L

to LFSAT, so that L �P, M LFSAT.

• Since L was arbitrarily chosen from NP , it follows that

LFSAT is NP-hard, as claimed.
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LFSAT is NP-Hard: Overview of Proof

• Problem: There is an awful lot to do here — and it is easy

to “get lost in the proof” because it is so long!

• The lecture notes include selected pieces of the rest of the

proof, with most of the rest included in the supplemental

material for this lecture.

• Ideally, students will believe that the result is true and have

some understanding of the organization of the proof

without, necessarily, having seen (or understood) all the

details.

• Of course, students will not be asked to give details about

this proof if they have not been included in these lecture

notes.
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LFSAT is NP-Hard: Construction of Fω from ω

In order to improve readability Fω will be described as if it

was a function of Boolean variables xi ,j ,σ where

• i is an index of a row in a tableau for ω, so i ∈ N and

0 ≤ i ≤ T (n).

• j is an index of a column in a tableau for ω, so that j ∈ N

and 0 ≤ j ≤ T (n) + 3.

• σ is a symbol that might be stored in the cell in row i and

column j of the tableau, so

σ ∈ Q ∪ Γ ∪ {#}.

• It might help of thinking that xi ,j ,σ is true (that is, has

value T under a truth assignment) if the symbol σ is stored

in row i and column j of the tableau.
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LFSAT is NP-Hard: Construction of Fω from ω

• Suppose we order the elements3 of Q ∪ Γ∪ {#}, so that we

can write

Q ∪ Γ ∪ {#} = {σ0, σ1, σ2, . . . , σℓ−1}

where ℓ = |Q|+ |Γ|+ 1.

3listing states first, followed by symbols in Γ, and ending with #, in order to

simplify details later
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LFSAT is NP-Hard: Construction of Fω from ω

• For 0 ≤ i ≤ T (n), 0 ≤ j ≤ T (n) + 3, and 0 ≤ h ≤ ℓ− 1, let

g(xi ,j ,σh
) = xh+j ·ℓ+i ·ℓ·(T (n)+4).

This provides an easily computable bijection from the set

of variables xi ,j ,σ (being used, here, for readability) to the

set of variables {xa | 0 ≤ a < ℓ · (T (n) + 4) · (T (n) + 1)}.

• We can apply this “on the fly” to obtain the kind of Boolean

formula defined near the beginning of the lecture.
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LFSAT is NP-Hard: Construction of Fω from ω

Fω is a Boolean formula with the form

(Fcell ∧ Fstart ∧ Faccept ∧ Fmove) (1)

• Fcell represents the requirement that there is exactly one

symbol from Q ∪ Γ ∪ {#} in each cell of the tableau.

• Fstart represents the requirement that the top row of the

tableau represents the initial configuration for M and the

input string ω.

• Faccept represents the requirement that the bottom row of

the tableau represents an accepting configuration.
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LFSAT is NP-Hard: Construction of Fω from ω

• Fmove — the most complicated of these subformulas —

represents the requirement that every row of the tableau

represents a configuration and, furthermore, if i ∈ N and

0 ≤ i ≤ T (n), then either

• Rows i and i + 1 represents configurations ηi and ηi+1,
respectively, such that ηi ⊢M ηi+1, or

• Row i represents a halting configuration ηi , and row i + 1
represents ηi too.

Consequence: If f : Σ⋆ → Σ⋆
F is the function mapping an input

string ω ∈ Σ⋆ to the encoding of the corresponding Boolean

formula Fω, then ω ∈ L if and only if f (ω) ∈ LFSAT, for all ω ∈ Σ⋆,

as desired.
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LFSAT is NP-Hard: Construction of Fω from ω

• It follows by the description of Fω at line (1) that

e(Fω) =

(e(Fcell) ∧ e(Fstart) ∧ e(Faccept) ∧ e(Fmove)) ∈ Σ⋆
F .

• If each of e(Fcell), e(Fstart), e(Faccept) and e(Fmove) can be

computed deterministically from ω, using time polynomial

in the length of ω, then e(Fω) can be computed

deterministically from ω, in polynomial time, too — as

needed to complete the proof.
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LFSAT is NP-Hard: The Subformula Fcell

Fcell represents the requirement that there is exactly one

symbol from Q ∪ Γ ∪ {#} in each cell of the tableau.

• Let Fcell be the formula

∧

0≤i≤T (n)


 ∧

0≤j≤T (n)+3




 ∨

σ∈Q∪Γ∪{#}

xi ,j ,σ


∧




∧

σ1,σ2∈Q∪Γ∪{#}
σ1 6=σ2

(
¬xi ,j ,σ1

∨ ¬xi ,j ,σ2

)









It follows, by inspection of the structure of this subformula,

that it is satisfied (under a truth assignment) if and only if

the above requirement is met.
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LFSAT is NP-Hard: The Subformula Fcell

• Since M is a fixed nondeterministic Turing machine

(where this construction is concerned) and the function T

is a fixed polynomial function of its input n, one can argue

both that the length of e(Fcell) is bounded by a polynomial

function of n and that the string e(Fcell) (which depends

only on |ω|) can be computed deterministically from ω,

using time bounded by a polynomial function of n as well.

• Suggested Exercise: If this is not clear, write a Java

program that generates e(Fcell) from n = |ω|, using ℓ and

the integers d , c0 and c1 used to define the function f as

constants.



Formula Satisfiability LF ∈ P LFSAT ∈ NP LFSAT is NP-Hard

LFSAT is NP-Hard: The Subformula Fstart

Fstart represents the requirement that the top row of the tableau

represents the initial configuration for M and the input string ω.

• Renaming symbols, suppose that ω ∈ τ1τ2 . . . , τn for

τ1, τ2, . . . , τn ∈ Σ; then let Fstart be the formula

x0,0,# ∧ x0,1,q0
∧


 ∧

1≤h≤n

x0,h+1,τh




∧


 ∧

n+2≤h≤T (n)+2

x0,h,⊔


 ∧ x0,T (n)+3,#

Once again, it follows by inspection of this formula that it is

satisfied (under a truth assignment) if and only if the above

requirement is met.
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LFSAT is NP-Hard: The Subformula Fstart

• As in the previous case, it is not difficult to argue that the

length of the string e(Fstart) is bounded by a polynomial

function of |ω| and — because the structure of this

subformula is reasonably simple and uniform — the string

e(Fstart) can be computed from ω deterministically, using a

number of moves bounded by a polynomial function of |ω|.
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LFSAT is NP-Hard: The Subformula Faccept

Faccept represents the requirement that the bottom row of the

tableau represents an accepting configuration.

• Let Faccept be the formula

∨

1≤h≤T (n)+2

xT (n),h,qaccept

While this subformula is not sufficient by itself, one can see

by inspection of its structure, and the requirements for the

subformula Fmove, that if this subformula meets the

requirements set for it, and

Faccept ∧ Fmove

is satisfied under a truth assignment then the desired

condition is met (because the bottom row represents a

configuration), as required.
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LFSAT is NP-Hard: The Subformula Faccept

• Once again — because it is a very simple subformula — it

is not difficult to argue that the length of e(Faccept) is

bounded by a polynomial function of |ω|, and that the string

e(Faccept) can be computed deterministically from ω, using

time bounded by a polynomial function of |ω|, in this case

too.
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LFSAT is NP-Hard: The Subformula Fmove

Fmove — the most complicated of these subformulas —

represents the requirement that every row of the tableau

represents a configuration and, furthermore, if i ∈ N and

0 ≤ i ≤ T (n), then either

• Rows i and i + 1 represents configurations ηi and ηi+1,

respectively, such that ηi ⊢M ηi+1, or

• Row i represents a halting configuration ηi , and row i + 1

represents ηi too.

A consideration of the above should confirm that the only things

left, to do, are to describe the subformula Fmove, argue that it

meets the conditions required for it, and that e(Fmove) can be

computed deterministically from ω, using a moves that is at

most polynomial in |ω|.
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LFSAT is NP-Hard: The Subformula Fmove

• Windows will be used describe a subformula, Fmove,

satisfying these conditions.

• Definition: For 0 ≤ i ≤ T (n)− 1 and 0 ≤ j ≤ T (n) + 1, the

window Wi ,j is a condition identifying the contents of the

cells of the tableau that are in rows i and i + 1 and columns

j , j + 1 and j + 2 — that is, the contents of cells

Ci ,j ,Ci ,j+1,Ci ,j+2,Ci+1,j ,Ci+1,j+1,Ci+1,j+2.
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LFSAT is NP-Hard: The Subformula Fmove

• Windows will be shown pictorially. In particular, the

condition that

Ci ,j = α1,Ci ,j+1 = α2,Ci ,j+2 = α3,Ci+1,j = β1,

Ci+1,j+1 = β2, and Ci+1,j+2 = β3,

can be shown as a window Wi ,j that is drawn as follows:

α1 α2 α3

β1 β2 β3

• Each window can specify one of (|Q| + |Γ|+ 1)6

combinations of values for the contents of the cells it

involves.
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LFSAT is NP-Hard: The Subformula Fmove

• The condition (from the previous slide) that

Ci ,j = α1,Ci ,j+1 = α2,Ci ,j+2 = α3,Ci+1,j = β1,

Ci+1,j+1 = β2, and Ci+1,j+2 = β3,

is (easily) represented by the subformula

(xi ,j ,α1
∧ xi ,j+1,α2

∧ xi ,j+2,α3
∧

xi+1,j ,β1
∧ xi+1,j+1,β1

∧ xi+1,j+2,β3
)
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LFSAT is NP-Hard: The Subformula Fmove

• A subset of the (combinations of values for) windows will

be defined to be illegal because they can only arise in

tableaux representing a sequence of configurations that do

not correspond to valid moves of the Turing machine M.

• The other (combinations of values for) windows will be

defined to be legal.
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LFSAT is NP-Hard: The Subformula Fmove

• Since there are only finitely many (combinations of values

for) windows, there is a fixed set of legal (combinations of

values for) windows. Thus a Boolean formula

legali ,j

representing the claim that the (contents of values in)

window Wi ,j is legal, is also easily described: It is the

“disjunct,” or or, of a fixed number of subformulas that look

like the above one, enclosed in parentheses.
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LFSAT is NP-Hard: The Subformula Fmove

Nontrivial Facts:

• Fmove can now be defined as the formula

Fmove =
∧

0≤i≤T (n)−1


 ∧

0≤j≤T (n)+1

legali ,j


 . (2)

It can be shown that this formula is satisfied if and only if

the conditions associated with “Fmove” are met.

• The structure of this subformula is simple enough for it to

be shown that an encoding of this subformula can be

computed deterministically from ω using time polynomial

in |ω|.

These facts are, now, all that is needed to complete a proof that

L �P, M LFSAT, so that LFSAT is NP-hard.
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LFSAT is NP-Hard: Defining legali,j

Consider the following conditions.

1. Every row begins and ends with # and there are no other

copies of # in the row.

2. Every row includes exactly one cell whose contents is a

state.

3. The change in state, contents of the tape cell initially

visible, and change in tape head location when going from

the configuration in one row to the configuration in the next

row, is consistent with M ’s transition function — and all

such changes, that are consistent with the transition

function, are allowed.
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LFSAT is NP-Hard: Defining legali,j

4. No symbol to the left of the position of the tape head is

changed when going from the configuration in one row to

the configuration in the row after that.

5. No symbol to the right of the position of the tape head is

changed when going from the configuration in one row to

the configuration in the row after that.

The first two conditions imply that every row of the tableau

represents a configuration. The last three imply that, for

0 ≤ i ≤ T (n), if ηi is the configuration represented by row i and

ηi+1 is the configuration represented by row i + 1, then either

ηi ⊢M ηi+1 or ηi is a halting configuration and ηi+1 = ηi .

Thus they imply the conditions given for Fmove.
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LFSAT is NP-Hard: Defining legali,j

• Consider the first requirement: Every row begins and

ends with # and there are no other copies of # in the row.

In order to satisfy this, let us declare that all windows such

that
α1 α2 α3

β1 β2 β3

such that either

i. exactly one of α1 or β1 is #, or

ii. exactly one of α3 or β3 is #, or
iii. β2 is #

are illegal.
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LFSAT is NP-Hard: Defining legali,j

Lemma #4: Let ϕ be any truth assignment such that

ϕ(Fω) = T,

where Fω is as described above, and where the windows

described in the previous slide are illegal, as specified there.

Then ϕ specifies a well-defined assignment of values in

Q ∪ Γ ∪ {#} to the cells in a two-dimensional table with

T (|ω|) + 1 rows and T (|ω|) + 4 columns, such that the contents

of each row begin and end with #, with no copy of # in between.
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LFSAT is NP-Hard: Defining legali,j

How To Prove This:

• Note that, since ϕ(Fω) = T, ϕ(Fcell) = T and it follows that

ϕ specifies a well-defined assignment of values

in Q ∪ Γ ∪ {#} to the cells in the two-dimensional table that

is mentioned in the lemma.

• It remains only to prove that the following property is

satisfied for every integer i such that 0 ≤ i ≤ T (|ω|): The

contents of the i th row of this table begin and end with #,

with no copy of # in between.
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LFSAT is NP-Hard: Defining legali,j

• This can be proved by induction on i , using the standard

form of mathematical induction — making use of the fact

that ϕ(Fstart) = T, ϕ(Fmove) = T and Fmove is as shown at

line (2), so that ϕ must specify values for table cells in such

a way that all windows are legal. It suffices to notice which

windows have been declared to be illegal after that.

• A complete proof is included in the supplement for this

lecture.
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LFSAT is NP-Hard: Defining legali,j

• The construction — and proof of Claim #3— is completed

by adding additional conditions about which windows are

illegal (and which are illegal), for each of the remaining four

conditions, and stating and proving claims, like the above

lemma, establishing that these conditions on windows

provide what is needed.

• The supplemental material includes the additional

conditions on windows, lemmas, and proofs (or proof

sketches) that are needed.
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Conclusions and Comments

Cook-Levin Theorem: LFSAT is NP-complete.

Proof: This is now a straightforward consequence of the

definition of “NP-complete” and the first two claims.

Cook’s Conjecture: P 6= NP .

If Cook’s conjecture is correct then no NP-complete language,

including LFSAT, is in P.

Final Note: The proof of the Cook-Levin Theorem outlined in

Sipser’s text, and given in these lecture notes, is the shortest

and simplest proof of this result — that is not so vague that it is

arguably not a proof, at all — that I know of.

Tableaux are also used to prove other results. We will

(probably) see these again.
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