Lecture #11: The Cook-Levin Theorem Exercises and Review

Additional Exercises

Consider the languages L_{FUnsat} , $L_{\text{Falsifiable}}$, $L_{\text{Tautology}} \subseteq L_{\text{F}}$ that were introduced during the lecture presentation. Notes from the discussion of these languages, from the lecture presentation, certainly might be helpful as you try to complete the following exercises.

- 1. Prove that L_{FUnsat} is co- \mathcal{NP} -complete.
- 2. Prove that $L_{\text{Falsifiable}}$ is \mathcal{NP} -complete.
- 3. Prove that $L_{\text{Tautology}}$ is co- \mathcal{NP} -complete.

Questions for Review

- 1. What does it mean for a language $L \subseteq \Sigma^*$ to be \mathcal{NP} -hard?
- 2. What does it mean for a language $L \subseteq \Sigma^*$ to be \mathcal{NP} -complete?
- 3. What is the Cook-Levin Theorem? Why is it significant?
- 4. How were **Boolean formulas** and **truth assignments** defined in this lecture? What does it mean for a Boolean formula to be **satisfiable**?
- 5. What is a *tableau* for a nondeterministic one-tape Turing machine¹

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$

and an input string $\omega \in \Sigma^*$ for *M*? What information, about the computation of *M* on input ω , does a tableau represent?

¹satisfying additional simplifying conditions, as given in the lecture notes

6. What is an *accepting tableau* for a nondeterministic Turing machine \mathcal{M} and an input string ω for M? Why are *accepting tableaux* of interest?

In particular, how are these used to prove that the language L_{FSAT} is \mathcal{NP} -hard?

- 7. Describe the structure of the formula (given in the lecture) \mathcal{F}_{ω} for a given string $\omega \in \Sigma^*$ — which is satisfiable if and only if ω is in the language of a given nondeterministic Turing machine.
- 8. What is a *window* (as used in the proof of the Cook-Levin Theorem)? Briefly describe at a high level how these are used to complete the proof of the Cook-Levin theorem whose beginning is given in the lecture notes.