
Lecture #11: The Cook-Levin Theorem

Lecture Presentation

Proving the Cook-Levin Theorem

Claim. The language LFSAT is NP-complete.

Why This Result is Significant:

How It Was Proved That LFSAT ∈ NP:

1

Proving That LFSAT is NP-Hard:

We must prove that L �P, M LFSAT for every language L such that L ∈ NP — so we begin

with a language L, along with a nondeterministic Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

and positive integers d, c1 and c0 such that M decides L and, furthermore, such that for every

string ω ∈ Σ⋆, the depth of the computation tree (of M) for ω is at most T (|ω|), for a function

T : N → N such that T (n) = c1n
d + c0 for every non-negative integer n.

What We Must Describe, at a High Level:

It is necessary to define a mapping from strings ω ∈ Σ⋆ to Boolean formulas Fω such that

ω ∈ L if and only Fω, for every string ω ∈ Σ⋆.

2

A Useful “Intermediate” Structure

It is assumed, now, that c0 ≥ 4 and that “#” is a symbol that does not belong to Q∪Γ. (It is also

assumed, as usual, that Q ∩ Γ = ∅). The value of c0 can certainly be increased, if needed, to

ensure that c0 ≥ 4, and a replacement for the symbol “#” can be chosen, if this symbol belongs

to Q ∪ Γ. A tableau is two-dimensional table with T (n) + 1 rows and T (n) + 4 columns that

satisfies the following properties.

(a) Each cell Ci,j of the table (for 0 ≤ i ≤ T (n) and 0 ≤ j ≤ T (n) + 3) stores a single symbol

in Q ∪ Γ ∪ {#}.

(b) When read in order from left to right, the symbols in each row form a string

#µ1qµ2#

where µ1, µ2 ∈ Γ⋆ and q ∈ Q — so that µ1qµ2 is a (possible) configuration of M . The

tableau has enough columns for any configuration that might arise, during the execution

of M on input ω, to be represented, in a row of the tableau, in this way.

(c) If

ω = σ1σ2 . . . σn

(where σ1, σ2, . . . , σn ∈ Σ) then the cells in the top row (row #0) of the tableau store the

string

#q0σ1σ2 . . . σn ⊔ ⊔ . . . ⊔ #

— the (padded) representation for the initial configuration of M and the input string ω.

(d) For 0 ≤ i ≤ T (n) − 1, if ηi is the configuration represented in row i and ηi+1 is the

configuration represented in row i+ 1, then either

• ηi ⊢M ηi+1, that is, it is possible to go from configuration ηi to configuration ηi+1

using a single move of M ,

or

• it is not possible for M to move out of configuration ηi — because this is either an

accepting configuration or a rejecting configuration — and ηi = ηi+1.

3

Thus the tableau gives a trace of one possible execution of M on the input string ω — includ-

ing enough rows for an entire trace of execution (ending with either an accepting configuration

or a rejecting configuration in the bottom row) to be shown.

A tableau is an accepting tableau if the configuration represented by the bottom row is an

accepting configuration — that is, it is in state qaccept. It follows that ω ∈ L if and only if

there exists an accepting configuration for M and ω — and it is now sufficient to describe

a construction of a Boolean formula Fω such that Fω is satisfiable if and only if Fω has an

accepting tableau.

In order to improve readability Fω will be described as if it was a function of Boolean variables

xi,j,σ where

• i is an index of a row in a tableau for ω, so i ∈ N and 0 ≤ i ≤ T (n).

• j is an index of a column in a tableau for ω, so that j ∈ N and 0 ≤ j ≤ T (n) + 3.

• σ is a symbol that might be stored in the cell in row i and column j of the tableau, so

σ ∈ Q ∪ Γ ∪ {#}.

• It might help of thinking that xi,j,σ is true (that is, has value T under a truth assignment)

if the symbol σ is stored in row i and column j of the tableau.

As discussed in the lecture notes there is a simple way to map these new variables to the

variables in the set

V = {x0, x1, x2, . . . }

that should be used when defining the Boolean formula Fω.

4

Fω is a Boolean formula with the form

(Fcell ∧ Fstart ∧ Faccept ∧ Fmove) (1)

• Fcell represents the requirement that there is exactly one symbol from Q ∪ Γ ∪ {#} in

each cell of the tableau.

• Fstart represents the requirement that the top row of the tableau represents the initial

configuration for M and the input string ω.

• Faccept represents the requirement that the bottom row of the tableau represents an

accepting configuration.

• Fmove — the most complicated of these subformulas — represents the requirement that

every row of the tableau represents a configuration and, furthermore, if i ∈ N and 0 ≤
i ≤ T (n), then either

– Rows i and i + 1 represents configurations ηi and ηi+1, respectively, such that

ηi ⊢M ηi+1, or

– Row i represents a halting configuration ηi, and row i+ 1 represents ηi too.

Each of the subformulas Fcell, Fstart and Faccept have very simple structures — making it rea-

sonably easy to see that they correctly represent what they are supposed to, and making

reasonably easy to see that their encodings can be computed from the input string ω, using a

number of steps that is at most polynomial in |ω|.

5

Windows — as defined next — will be used to describe the remaining subformula, Fmove.

Definition: For 0 ≤ i ≤ T (n) − 1 and 0 ≤ j ≤ T (n) + 1, the window Wi,j is a condition

identifying the contents of the cells of the tableau that are in rows i and i + 1 and columns j,

j + 1 and j + 2 — that is, the contents of cells

Ci,j , Ci,j+1, Ci,j+2, Ci+1,j , Ci+1,j+1, Ci+1,j+2.

Windows will be shown pictorially. In particular, the condition that

Ci,j = α1, Ci,j+1 = α2, Ci,j+2 = α3, Ci+1,j = β1, Ci+1,j+1 = β2, and Ci+1,j+2 = β3,

can be shown as a window Wi,j that is drawn as follows:

α1 α2 α3

β1 β2 β3

Each window can specify one of (|Q|+ |Γ|+1)6 combinations of values for the contents of the

cells it involves — and the above condition is (easily) represented by the subformula

(xi,j,α1
∧ xi,j+1,α2

∧ xi,j+2,α3
∧ xi+1,j,β1

∧ xi+1,j+1,β1
∧ xi+1,j+2,β3

).

A subset of the (combinations of values for) windows will be defined to be illegal because they

can only arise in tableaux representing a sequence of configurations that do not correspond to

valid moves of the Turing machine M . The other (combinations of values for) windows will be

defined to be legal.

Since there are only finitely many (combinations of values for) windows, there is a fixed set of

legal (combinations of values for) windows. Thus a Boolean formula

legali,j

representing the claim that the (contents of values in) window Wi,j is legal, is also easily

described: It is the “disjunct,” or or , of a fixed number of subformulas that look like the above

one, enclosed in parentheses.

While it is not obvious, it can be shown that the subformula Fmove can be defined as the formula

Fmove =
∧

0≤i≤T (n)−1





∧

0≤j≤T (n)+1

legali,j



 . (2)

That is, it can be shown that this formula is satisfied if and only if the conditions associated with

“Fmove” are met. The structure of this subformula is simple enough for it to be shown that an

encoding of this subformula can be computed deterministically from ω using time polynomial

in |ω|.

6

Using a Satisfying Truth Assignment to Construct an Accepting Tableau:

7

Using an Accepting Tableau to Construct a Satisfying Truth Assignment:

8

Other Formula Satisfiability Problems of Interest

Let F be a Boolean formula, defined using the set of Boolean variables

V = {x0, x1, x2, },

as described in the lecture notes.

Unsatisfiable Boolean Formulas

A Boolean formula F is unsatisfiable if ϕ(F) = F for every partial truth assignment ϕ that is

complete enough for a truth value of F to be defined, at all.

This suggests a “decision problem”’ which might be called the Boolean Formula Unsatisfia-

bility problem: Is a given Boolean formula, F , unsatisfiable?

Let LFUnsat ⊆ LF be the language of encodings of unsatisfiable Boolean formulas.

How is LFUnsat Related to the Languages We Have Already Seen?

What Can Be Proved About the Complexity of LFUnsat?

9

Notes about How to Prove This:

10

Falsifiable Boolean Formulas

A Boolean formula F is falsifiable if there exists a (partial) truth assignment ϕ such that

ϕ(F) = F.

This suggests a “decision problem”’ which might be called the Boolean Formula Falsifiability

problem: Is a given Boolean formula, F , falsifiable?

Let LFalsifiable ⊆ LF be the language of encodings of falsifiable Boolean formulas.

How is LFalsifiable Related to the Languages We Have Already Seen?

What Can Be Proved About the Complexity of LFalsifiable?

11

Notes about How to Prove This:

12

Tautologies

A Boolean formula F is a tautology if ϕ(F) = T for every partial truth assignment ϕ that is

complete enough for a truth value of F to be defined, at all.

This suggests a “decision problem”’ which might be called the Tautology problem: Is a given

Boolean formula, F , a tautology?

Let LTautology ⊆ LF be the language of encodings of tautologies.

How is LTautology Related to the Languages We Have Already Seen?

What Can Be Proved About the Complexity of LTautology?

13

Notes about How to Prove This:

14

