
Lecture #11: The Cook-Levin Theorem

Proofs of Claims

This document includes of claims, from Lecture #11, that are needed to complete this proof of

the Cook-Levin Theorem. It is for interest only — students do not need to read this in order

to do well in this course.

1 Proof of a Useful Lemma

While the complexity class NP was defined using multi-tape nondeterministic Turing ma-

chines, the proof the NP-hardness of LFSAT uses one-tape nondeterministic Turing machines

instead. The following lemma is needed to establish that this simplification can be made.

Lemma. Let L ∈ Σ⋆ such that L ∈ NP . Then there exists a deterministic one-tape Turing

machine1

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

such that decides L and such that the depth of the computation tree for M and a string ω is

bounded by a polynomial function of |ω|, for all ω ∈ Σ⋆.

Sketch of Proof. Let L ⊆ Σ⋆ such that L ∈ NP . Then there exists a k-tape nondeterministic

Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject),

for some positive integer k, that decides L in polynomial time. It follows that there also exist

positive integer constants c1 and d, and a nonnegative integer constant c0, such that the depth

of the computation tree for M and an input string ω is at most c1|ω|
d + c0 for every string

ω ∈ Σ⋆.

It now suffices to apply a straightforward modification of the construction used to prove Claim #2

in Lecture #3 (which establishes a corresponding result for deterministic Turing machines) to

1As with deterministic one-tape Turing machines it will be assumed that the transitions can only specify moves

left or right for this type of Turing machine.

1

prove that there exists a nondeterministic one-tape Turing machine

M̂ = (Q̂,Σ, Γ̂, δ̂, q̂0, q̂accept, q̂reject)

that also decides L: M̂ ’s tape represents M ’s tapes (including their contents and the posi-

tions of their tape heads) in exactly the same way as described in the notes for Lecture #3.

The initialization phase of the simulation is also identical to the initialization phase in these

notes. The only difference in simulating moves is that a “read” phase is used to determine

the symbols visible on M ’s tapes, as in the original simulation — but the machine M must

then nondeterministically guess which of the moves allowed by M̂ ’s transition function is to be

applied. The update process, needed to update M̂ ’s in order to reflect writes onto M ’s tapes

and movements of its tape heads, is then also the same as before.

It is easy to argue that the number of leaves in the computation tree for M̂ and an input string

ω ∈ Σ⋆ is the same as the number of leaves in the computation tree forM and ω. Furthermore,

if the length of the path from the root to some leaf in the computation tree for M and ω is a

nonnegative integer T then the analysis of the number of steps used in the simulation for

deterministic Turing machines can be applied to establish that the length of the path from the

root to the corresponding leaf, in the computation tree for M̂ and ω, is at most

• (2k + 1)T 2 + (2k + 2)T + k + 2 if n = |ω| = 0,

• 2nT + 2kT 2 + (2k + 3)T + 2n+ 1 if 1 ≤ T ≤ n = |ω|, and

• (2k + 1)T 2 + n2 + (2k + 2)T + n+ k if 1 ≤ n < T .

This can be used to argue that the depth of the computation tree for M̂ and ω must be in

O(|ω|2d), establishing the claim.

2 Proof of Claim #1

Claim 1. LF ∈ P.

Sketch of Proof. Consider the execution of the algorithm shown in Figure 1, on page 3, on an

input string ω ∈ Σ⋆. A consideration of the details of the step at line 1 should confirm that ω is

rejected during this step unless ω is a concatenation of encodings of Boolean variables and

of copies of left and right brackets and of logical operators ∧, ∨, and ¬. Furthermore, if ω has

not been rejected during this step then the string that has been written onto the second tape is

simply the string that can be obtained from ω by replacing each encoding of a Boolean variable

that is a substring of ω (and that is not followed by another digit) by a copy of the symbol F.

2

On input ω ∈ Σ⋆
F . . .

1. Reject if ω is the empty string.

Otherwise sweep to the right over ω — copying punctuation (brackets) and

logical operators onto a second tape. Every time x is seen, reject if this is not

followed by the unpadded decimal representation of a non-negative integer

(processing as many digits as you can). If the input has not been rejected write

F onto the second tape, instead of the encoding of a Boolean variable.

Do this until all of the input string has been processed, moving back to the

beginning of the second tape if the input has not been rejected.

2. If the non-blank string on the second tape has length greater than or equal to

two, go to step 3. Go to step 5 otherwise.

3. Sweep over the string on the second tape, copying symbols onto a third tape,

except that the following should be changed.

• If the substring ¬F is seen on the second tape, write F onto the third tape

instead.

• If a substring (F ∧ F ∧ · · · ∧ F) — consisting of two or more copies of F,

separated by copies of ∧, and enclosed by brackets — is seen on the

second tape, write F onto the third tape instead.

• If a substring (F ∨ F ∨ · · · ∨ F) — consisting of two or more copies of F,

separated by copies of ∨, and enclosed by brackets — is seen on the

second tape, write F onto the third tape instead.

4. Reject if the entire string on the second tape was processed, and the string

written onto the third tape is the same as the one on the second.

Otherwise, replace the string with the second tape with the one on the third,

erasing the contents of the third tape, and moving the tape heads for both tapes

back to the left. Then go back to step 2.

5. If the non-blank string on the second tape is F then accept . Otherwise, reject .

Figure 1: A Deterministic Algorithm Deciding Membership in LF

Now, if ω ∈ LF then it can be shown that this algorithm accepts ω — by induction on the

length of a “derivation” of the Boolean formula F encoded by ω, using the inductive definition

of Boolean formulas that is included in the lecture notes.

3

On the other hand, the algorithm is executed with ω as input, and ω is accepted, then the step

at line 3 must be executed some finite number of times, before this happens, and it is possible

to prove that ω is an encoding of a Boolean formula, so that ω ∈ LF, by induction on the

number of times that the step at line 3 is executed when ω is processed.

Thus the language of a Turing machine implementing this algorithm is LF. If this Turing ma-

chine halts when executed on input ω, for all ω ∈ Σ⋆
F , then this Turing machine decides LF.

It therefore remains only to prove that this Turing machine halts whenever it is executed on an

input string ω ∈ Σ⋆, using a number of moves that is bounded by a polynomial function of |ω|.

The first step can each be carried out using sweeps to the moving right over the input, while

moving right on the second tape, and then moving back to the left on the second tape. The

non-blank string written onto the second tape cannot be longer than the input, so the number

of moves needed for this is certainly at most linear in |ω|.

The second step can certainly be implemented so that each execution of this step requires

at most a polynomial number of moves. With a bit of work one can argue that the number of

moves needed to execute the step at line 3 is at most linear in the length of the non-blank string

that is on the second tape when the execution of this step begins — and that the number of

moves needed for the execution of the step at line 4 immediately after that is at most linear in

the length of this string as well.

Note, now, that the non-blank string on the second string is replaced by a strictly shorter non-

blank string every time this pair of moves is carried out. It follows that these steps are each

executed at most |ω| times. Each execution requires O(|ω|) moves, so that the total number of

moves needed for all executions of the steps at lines 2–4 is in O(|ω|2).

The step at line 5 requires only a constant number of moves. It follows that a Turing machine

implementing this algorithm decides LF, using O(|ω|2) moves when executed on an input

string ω ∈ Σ⋆. Thus LF ∈ P, as claimed.

3 Proof of Claim #2

Claim 2. LFSAT ∈ NP.

Sketch of Proof. Consider the algorithm that begins in Figure 2 on page 5 and ends in Figure 3

on page 6. In particular, consider an execution of this algorithm on an input string µ ∈ Σ̂⋆,

where the alphabet Σ̂ is as defined in the lecture notes.

A consideration of the first two moves should confirm that µ is rejected using time linear in the

length of its input if the input does not begin with ω# where ω ∈ Σ⋆
F . It follows by Claim 1 that

the input is also rejected — using a number of moves that is at most polynomial in |ω| — if the

4

On input µ ∈ Σ̂⋆ . . .

1. Reject if µ is the empty string. Otherwise, sweep right over µ, copying symbols

in µ onto the second tape, as long as these symbols belong to ΣF — ending

when some symbol that is not in ΣF is seen on the first tape.

Reject if the symbol that is now visible on the first tape is not #. Otherwise

move the tape head for the second tape back to the leftmost cell on this tape,

while moving right once on the first tape (so that the symbol visible is the one

immediately to the right of #).

2. Let ω ∈ Σ⋆
F be the string that has now been copied onto the second tape.

Reject if ω /∈ LF. Otherwise move the tape head for the second tape back to

the leftmost cell.

3. While the symbol visible on the first tape is not blank, copy this symbol onto the

third tape, moving right on the first, second and third tapes, in order to check

the relationship between |ω| and the number of symbols that have been copied

onto the third tape.

Reject if either a symbol that would be copied onto the third tape is not in ΣC

or it is discovered the input string includes more than |ω|+ 2 symbols after #.

4. Let ν be the non-blank string in Σ⋆
C , with length at most |ω| + 2, that has now

been copied onto the third tape. Reject unless ν is an encoding of a subset S
of the set V of Boolean variables such that

• each Boolean variable xi, included in S, appears in the Boolean for-

mula F encoded by ω, and

• the encodings of Boolean variables included in ν are sorted by increasing

index.

It the input has not been rejected, by now, let F be the Boolean formula encoded

by ω and let ϕ : V → {T, F} be the truth assignment encoded by ν.

Figure 2: Beginning of a Verification Algorithm for LFSAT

input does begin with a string ω#, for ω ∈ Σ⋆
F , but ω /∈ LF.

Suppose, now, that the input string does begin with ω# for a string ω ∈ LF. A consideration of

the step at line 3 confirms that the input is rejected , using a number of moves that is at most

linear in |ω|, unless µ = ω#ν for a string ν ∈ Σ⋆
C such that |ν| ≤ |ω| + 2. Furthermore, if the

5

5. Sweeping over the strings on the second and third tapes, as needed, copy the

symbols on the second tape (encoding F) onto the fourth tape — except that

the encoding of each Boolean variable xi that appears in F should be replaced

on the fourth tape by its truth value under ϕ, ϕ(xi) ∈ {T, F}, as given by the

string on the third tape.

6. If the non-blank string on the fourth tape has length at least two then go to

step 7. Otherwise, go to step 9.

7. Sweep over the string on the fourth tape, copying symbols onto the fifth tape,

except that the following should be changed.

• If the substring ¬T is seen on the fourth tape, write F onto the fifth tape

instead. If the substring ¬F is seen on the fourth tape, write T on the fifth

tape instead.

• If a substring (w1 ∧w2 ∧ · · · ∧wk) is seen on the fifth tape, where k ≥ 2
and wi ∈ {T, F} for 1 ≤ i ≤ k, then write T on the fifth tape, instead, if

wi = T for all i such that 1 ≤ i ≤ k, and write F on the fifth tape instead,

otherwise.

• If a substring (w1 ∨w2 ∨ · · · ∨wk) is seen on the fifth tape, where k ≥ 2
and wi ∈ {T, F} for 1 ≤ i ≤ k, then write F on the fifth tape, instead, if

wi = F for all i such that 1 ≤ i ≤ k, and write T on the fifth tape instead,

otherwise.

8. Replace the non-blank string on the fourth tape with the non-blank string on

the fifth tape, erasing the non-blank string in the fifth tape in the process, and

moving the tape heads for each tape to the leftmost cell of the tape.

9. If the nonblank string on the fourth tape is “T” then accept . Otherwise, reject .

Figure 3: Continuation of a Verification Algorithm for LFSAT

input has not been rejected then ν has been copied onto the third tape.

Note, now, that if ν encodes a set S of Boolean variables then ν is simply the concatenation

of encodings of Boolean variables, separated by commas and enclosed by set brackets; it is

certainly possible to check whether this is the case (rejecting, if it is not) using time linear in |ν|.
Indeed, this test can be carried out using a sweep to the right over the copy of ν on the third

tape. If a fourth tape is used to store an encoding of a Boolean variable already found on the

third tape, then one can also confirm that the variables included in the encoding are distinct,

and sorted by increasing order, by comparing the indices in adjacent encodings. Finally, one

6

can check that each variable, whose encoding is included in ν, is used in F by sweeping

over ω — using a number of moves in O(|ω|) for each variable that must be checked. Since

the number of such variables is certainly at most |ν|, it follows that test at step 4 can be carried

out using O(|µ| × |ω|) ⊆ O(|ω|2) moves.

Now, either the input has been rejected before an execution of step 4 ends — and the re-

quirements for a verification algorithm are satisfied — or it has been confirmed that the input

includes an encoding ω of a Boolean formula F , and an encoding µ of a truth assignment ϕ.

The string ν is a certificate for ω if and only if ϕ(F) = T — so it is sufficient, now, to argue that

the remaining steps of the algorithm cause the input string to be accepted if ϕ(F) = T and

cause it to be rejected otherwise — using a number of moves that is at most polynomial in |ω|.

Consider the step at line 5. Since this replaces each variable xi in F with its truth value ϕ(xi),
this produces a “Boolean expression” — a logical function of the Boolean constants T and F,

produced using the logical operators ∧, ∨, and ¬, whose value is the truth value ϕ(F) under ϕ.

As the step notes this expression can be produced by sweeping over ω, writing symbols onto

another tape, replacing each variable xi with its truth value ϕ(xi) — which can be found by

sweeping over the encoding ν of ϕ: If this includes the encoding of xi as a substring (followed

by a comma or right bracket) then ϕ(xi) = T; ϕ(xi) = F, otherwise. Now, each truth value can

be obtained using O(|ν|) moves and, since there are at most |ω| truth values to look for, the

total number of moves needed to carry out this step is in O(|ω| × |ν|) ⊆ O(|ω|2).

Steps 7 and 8 repeatedly replace the Boolean expression, whose encoding is on the fourth

tape, with a strictly shorter expression with the same truth value. It can be argued (with a bit

of work) that the number of moves needed to execute this pair of steps once is at most linear

in the length of the Boolean expression that is on the fourth tape before the operations are

carried out. Since the expression is shortened every time the steps are executed one can see,

by an examination of step 6, that the number of times they are executed is at most the length

of the expression originally on the fourth tape — which is certainly at most |ω|. It follows that

the total number of moves used for all executions of the steps at lines 6–8 is in O(|ω|2).

When the step at line 9 is reached, the expression on the fourth tape is a Boolean expression

with length one — so that it is either T or F — with the same value as ϕ(F). Thus an input of the

form ω#ν (where ω ∈ Σ⋆
F and ν ∈ Σ⋆

C) is accepted if and only if ν is a certificate for ω. When

the input has this form the number of moves used is in O(|ω|2) so that this is a polynomial-time

verification algorithm for LFSAT.

It follows that LFSAT ∈ NP , as claimed.

7

4 Proof of Claim #3

Claim 3. LFSAT is NP-hard.

4.1 Overview of Construction

In order to prove Claim 3 it is necessary, and sufficient, to prove that L �P, M LFSAT for an

arbitrarily chosen language L ∈ NP . Thus one should consider a one-tape nondeterministic

Turing machine

M = (Q,Σ,Γ, δ, q0, qaccept, qreject)

that decides the language L ⊆ Σ⋆ such that, for every input string ω ∈ Σ⋆, the computation

tree for M and ω has depth at most

T (|ω|) = c1|ω|
d + c0

for positive integer constants c0, c1 and d. Increasing the time bound, we may assume that

c0 ≥ 4.

As described in the lecture notes, a tableau — a two-dimensional table with T (|ω|) + 1 rows

and T (|ω|) + 3 columns, whose cells store values in Q ∪ Γ ∪ {#} — can then be defined, as

an aid to the construction and analysis of a Boolean formula

Fω = (Fcell ∧ Fstart ∧ Faccept ∧ Fmove)

where each of the subformulas in Fω represents a requirement, as follows.

• Fcell represents the requirement that there is exactly one symbol from Q ∪ Γ ∪ {#} in

each cell of the tableau. As stated in the lecture notes, if |ω| = n then this can be

achieved by setting2 Fcell to be

∧

0≤i≤T (n)

 ∧

0≤j≤T (n)+3

 ∨

σ∈Q∪Γ∪{#}

xi,j,σ

∧

∧

σ1,σ2∈Q∪Γ∪{#}
σ1 6=σ2

(¬xi,j,σ1
∨ ¬xi,j,σ2

)

2In the presentation, Boolean variables xi,j,σ are used where 0 ≤ i ≤ T (|ω|), 0 ≤ T (|ω|)+3, σ ∈ Q∪Γ∪{#},

and this variable has value T if the cell in row i and column j stores σ. As discussed in the lecture notes these

variables can replaced “on the fly” with variables in the set V = {x0, x1, x2, . . . } — so the new variables are used

to improve readability but do not significantly change the proof.

8

• Fstart represents the requirement that the top row of the tableau represents the initial

configuration of M on input ω. If

ω = τ1τ2 . . . τn

where τ1, τ2, . . . , τn ∈ Σ then it suffices to set Fstart to be

x0,0,# ∧ x0,1,q0 ∧

 ∧

1≤h≤n

x0,h+1,τh

 ∧

 ∧

n+2≤h≤T (n)+2

x0,h,⊔

 ∧ x0,T (n)+3,#

• Faccept represents the requirement that the bottom row of the tableau represents an ac-

cepting configuration. If the subformula Fmove represents the property that it is supposed

to — as described below — then it suffices to set Faccept to be
∨

1≤h≤T (n)+2

xT (n),h,qaccept

Note that, since M is a fixed nondeterministic Turing machine, c0, c1 and d (used to define

the function T) are fixed positive integers, and the structures of each of the above subfor-

mulas, it can be argued that encodings of all three of these subformulas can be computed

deterministically from a given string ω ∈ Σ⋆ using time at most polynomial in |ω|.

It remains only to consider the final subformula, Fmove, which represents the requirement that

every row of the tableau represents a configuration of M and, furthermore, if i ∈ N and

0 ≤ i ≤ T (n), then either

• rows i and i+1 represent configurations ηi and ηi+1, respectively, such that ηi ⊢M ηi+1,

or

• row i represents a halting configuration ηi of M , and row i+ 1 represents ηi too.

Windows were then introduced as structures giving conditions concerning the contents of six

cells — in two rows, and three columns — of the tableau. In particular, if Ci,j denotes the

contents in row i and column j of the tableau, for 0 ≤ i ≤ T (n) and 0 ≤ j ≤ T (n)+3, then the

window Wr,s identifies the contents of cells Cr,s, Cr,s+1, Cr,s+2, Cr+1,s, Cr+1,s+1 and Cr+1,s+2

— and is defined for all integers r and s such that 0 ≤ r ≤ T (n)− 1 and 0 ≤ j ≤ T (n) + 1.

As described in the lecture notes, windows are shown pictorially. In particular, the condition

that

Ci,j = α1, Ci,j+1 = α2, Ci,j+2 = α3, Ci+1,j = β1, Ci+1,j+1 = β2, and Ci+1,j+2 = β3, (1)

can be shown as a window Wi,j that is drawn as follows:

α1 α2 α3

β1 β2 β3
(2)

9

Each window can specify one of (|Q|+ |Γ|+1)6 combinations of values for the contents of the

cells it involves.

Note that the condition at line (1) is represented by the subformula

(xi,j,α1
∧ xi,j+1,α2

∧ xi,j+2,α3
∧ xi+1,j,β1

∧ xi+1,j+1,β1
∧ xi+1,j+2,β3

)

Several of the (combinations of values for) windows will be defined to be illegal because they

can only arise in tableaux representing a sequence of configurations that do not correspond to

valid moves of the Turing machine M ; the other (combinations of values for) windows will be

defined to be legal.

Since there are only finitely many (combinations of values for) windows, there is a fixed set of

legal (combinations of values for) windows. Thus a Boolean formula

legali,j

representing the claim that the (contents of values in) window Wi,j is legal, is also easily

described: It is the “disjunct,” or or , of a fixed number of subformulas that look like the above

one, enclosed in parentheses.

A proof that LFSAT is NP-hard can be concluded by establishing the following.

• If Fmove is defined as

Fmove =
∧

0≤i≤T (n)−1

 ∧

0≤j≤T (n)+1

legali,j

 (3)

(after specifying the set of windows that should be considered to be legal) then Fmove

satisfies the properties that have been identified for it.

• The string e(Fmove) can be computed deterministically from ω using time that is at most

polynomial in |ω|.

The proof in the lecture notes continued by introducing the following conditions.

1. Every row begins and ends with # and there are no other copies of # in the row.

2. Every row includes exactly one cell whose contents is a state.

3. The change in state, contents of the tape cell initially visible, and change in tape head

location when going from the configuration in one row to the configuration in the next row,

is consistent withM ’s transition function — and all such changes, that are consistent with

the transition function, are allowed.

10

4. No symbol to the left of the position of the tape head is changed when going from the

configuration in one row to the configuration in the row after that.

5. No symbol to the right of the position of the tape head is changed when going from the

configuration in one row to the configuration in the row after that.

These conditions are handled by refining the set of legal (and illegal) windows in such a way

that — when subformulas Fcell, Fstart and Faccept are also satisfied — they are achieved if and

only if the subformula Fmove is satisfied, for Fmove as at line (3).

4.2 Achieving the First Condition

Consider the first condition — that every row begins and ends with # and there are no other

copies of # in the row.

In order to satisfy this, let us require that all windows, as shown at line (2), such that either

i. exactly one of α1 or β1 is #, or

ii. exactly one of α3 or β3 is #, or

iii. β2 is #

are illegal.

Lemma 4. Let ϕ be any truth assignment such that

ϕ(Fω) = T,

where Fω is as described above, and where the windows described above are illegal, as

specified there.

Then ϕ specifies a well-defined assignment of values in Q ∪ Γ ∪ {#} to the cells in a two-

dimensional table with T (|ω|)+1 rows and T (|ω|)+4 columns, such that the contents of each

row begin and end with #, with no copy of # in between.

Proof. Let ϕ be any truth assignment such that ϕ(Fω) = T. Since ϕ(Fcell) = T, ϕ specifies

a well-defined assignment of values in Q ∪ Γ ∪ {#} to the cells in a two-dimensional table

with T (|ω|) + 1 rows and T (|ω|) + 3 columns. It therefore suffices to show that the following

property is satisfied for ever integer i such that 0 ≤ i ≤ T (|ω|):

The contents of the ith row of the table begin and end with # and do not have any

other copies of # in-between.

11

This can be proved by induction on i. The standard form of mathematical induction can be

used.

Basis: An inspection of the subformula Fstart confirms that, since ϕ(Fstart) = T, the property is

satisfied when i = 0.

Inductive Step: Let i be an integer such that 0 ≤ i ≤ T (|ω|)− 1. It is necessary and sufficient

to use the following

Inductive Hypothesis: The contents of the ith window begin and end with # and do

not have any other copies of # in-between.

to prove the following

Inductive Claim: The contents of the i + 1st window begin and end with # and do

not have any other copies of # in-between.

• The contents of the i + 1st column must begin with # — for, otherwise, it follows by

the Inductive Hypothesis that Wi,0 is a window as shown at line (2) such that α1 =
and β1 6= # — making this an illegal window, since the above condition (i) is not

satisfied. Thus ϕ(Fω) = ϕ(Fmove) = ϕ(legali,0) = F, contradicting the requirement

that ϕ(Fω) = T.

• The contents of the i+1st column must also end with # — for, otherwise, it follows by the

Inductive Hypothesis that Wi,T (n)+1 is a window as shown at line (2) such that α3 = #

and β3 6= # — making this an illegal window, since condition (ii) is not satisfied. Thus

ϕ(Fω) = ϕ(legali,T (n)+1) = F, contradicting the requirement that ϕ(Fω) = T, once

again.

• Suppose (to obtain a contradiction) that the contents in row i+ 1 and column j is also #

for an integer j such that 1 ≤ j ≤ T (|ω|)−1. Then window Wi,j−1 is a window as shown

at line (2) such that β2 = # — making this an illegal window, since condition (iii) is not

satisfied. Thus ϕ(Fω) = ϕ(legali,j−1) = F, once again contradicting the requirement

that ϕ(Fω) = T. Thus the i+ 1st window does not have any copies of #, in-between.

Thus the Inductive Claim is satisfied, as needed to complete the Inductive Step and the proof

of the claim.

4.3 Achieving the Second Condition

Consider the second condition — that every row includes exactly one cell whose contents is a

state.

12

In order to satisfy this, let us require that all windows as shown at line (2) such that either

i. two or more of β1, β2 and β3 belong to Q, or

ii. α2 ∈ Q but none of β1, β2 or β3 belong to Q, or

iii. β2 ∈ Q but none of α1,α2 or α3 belong to Q

are illegal.

Lemma 5. Let ϕ be any truth assignment such that

ϕ(Fω) = T,

where Fω is as described above, and where the windows described above are illegal, as

specified there.

Then ϕ specifies a well-defined assignment of values in Q ∪ Γ ∪ {#} to the cells in a two-

dimensional table with T (|ω|)+1 rows and T (|ω|)+4 columns, such that the contents of each

row begin and end with #. Exactly one of the cells in between, in this row, stores a copy of a

state, and all other cells in-between store elements of Γ.

Thus every row in this table stores a representation of a configuration of M .

Proof. Let ϕ be any truth assignment such that ϕ(Fω) = T. Lemma 4 remains correct, even

though additional windows have now been specified to be illegal after it was stated and proved

— since this would only reduce the set of truth assignments ϕ such that ϕ(Fω), rather than

adding to this set. It follows by this claim that ϕ specifies a well-defined assignment of values

in Q ∪ Γ ∪ {#} to the cells in a two-dimensional table, with T (|ω|) + 1 rows and T (|ω|) + 4
columns, such that the contents of each row begin and end with #, and no copy of # in between.

It follows from this that each of the cells, in between, store an element of Q ∪ Γ. It is therefore

sufficient to prove that each row has exactly one cell, storing a copy of a state, to establish

the claim. That is, the following property must be proved to hold for each integer i such that

0 ≤ i ≤ T (|ω|).

There is exactly one cell in the ith row of the table that stores a state.

This can be proved by induction on i. The standard form of mathematical induction can be

used.

Basis: An inspection of the subformula Fstart confirms that, since ϕ(Fstart) = T, the property is

satisfied when i = 0.

Inductive Step: Let i be an integer such that 0 ≤ i ≤ T (|ω|)− 1. It is necessary and sufficient

to use the following

13

Inductive Hypothesis: Exactly one cell of the ith row of the table stores a state.

to prove the following

Inductive Claim: Exactly one cell of the i+ 1st row of the table stores a state.

Suppose, first, that the i+1st row does not store any copies of states, at all. Let j be the position

of the state in the ith row, so that 1 ≤ j ≤ T (n)+ 2 (since the row begins and ends with #) and

the symbol in row i and column j is a state. Then window Wi,j−1 is illegal window because

it is as shown at line (2), where α2 ∈ Q but β1, β2, β3 /∈ Q. Thus ϕ(Fω) = ϕ(legali,j−1) = F,

contradicting the fact that ϕ(Fω) = T. Thus there is at least one cell in the i+1st row storing

a state.

Suppose, next, that the i + 1st row includes two or more cells that store states. Let j and k
be the two smallest integers such that the cells in row i + 1 and columns j and k each store

states, so that (again, because the contents of this row begin and end with #), 1 ≤ j < j+1 ≤
k ≤ T (n) + 2.

• If k = j + 1 or k = j + 2 then Wi,j is illegal because it is as shown at line (2), two or

more of β1, β2 and β3 belong to Q, so that ϕ(Fω) = ϕ(legali,j) = F, contradicting the

fact that ϕ(Fω) = T.

• If k ≥ j + 3 and the cell in row i storing a state is in column h, where h ≤ j + 1, then

window Wi,k−1 is illegal because it is as shown at line (2) with β2 ∈ Q and none of α1,

α2 or α3 in Q. Thus ϕ(Fω) = ϕ(legali,k−1) = F, establishing a contradiction in this

case too.

• The only case that remains is that k ≥ j + 3 and the cell in row i storing a state is

in column h, where h ≥ j + 2. It now follows that window Wi,j−1 is illegal because

it is as shown at line (2) with β2 ∈ Q but none of α1, α2 or α3 in Q. Thus ϕ(Fω) =
ϕ(legali,j−1) = F, giving a contradiction once again.

Since a contradiction has been established in every case, at most one cell in the i+1st row can

store a state. Thus exactly one such cell stores a state, as needed to establish the Inductive

Claim, completing the Inductive Step and the proof of the claim.

4.4 Achieving the Third Condition

Consider the third condition — that the change in state, contents of the tape cell initially visible,

and change in tape head location when going from the configuration in one row to the config-

uration in the next row, is consistent with M ’s transition function — and all such changes, that

are consistent with the transition function, are allowed.

14

The following conditions will now be added — noting that these reduce the set of windows that

might be legal, without identifying any window to be legal if it is already illegal — because none

of the windows, shown below, have been classified as “illegal” already.

(a) A window

q α1

s β1

is legal when q, s ∈ Q and α1, β1 ∈ Γ if and only if either

i. (s, β1, L) ∈ δ(q, α1), or

ii. q ∈ {qaccept, qreject}, s = q, and α1 = β1.

(b) A window

q α1

β1 s

is legal when q, s ∈ Q and α1, β1 ∈ Γ if and only if (s, β1, R) ∈ δ(q, α1).

(c) A window

α1 q α2

s β1 β2

is legal when q, s ∈ Q and α1, α2, β1, β2 ∈ Γ if and only if (s, β2, L) ∈ δ(q, α2) and

α1 = β1.

(d) A window

α1 q α2

β1 β2 s

is legal when q, s ∈ Q and α1, α2, β1, β2 ∈ Γ if and only if (s, β2, R) ∈ δ(q, α2) and

α1 = β1.

(e) A window

α1 q α2

β1 s β2

is legal when q, s ∈ Q and α1, α2, β1, β2 ∈ Γ if and only if s = q ∈ {qaccept, qreject},

α1 = β1, and α2 = β2.

(f) All windows

α1 q #

β1 β2 β3

where α1 ∈ Γ and q ∈ Q are illegal.

15

4.5 Achieving the Fourth Condition

Consider the fourth condition — that no symbol to the left of the position of the tape head is

changed when going from the configuration in one row to the configuration in the row after that.

The following conditions will be added. Once again, a comparison of the contents of the

windows shown below, and the windows in the rules above this, will confirm that these also

reduce the set of windows that might be legal, without identifying any window to be legal if it

is was already classified as illegal (because none of the windows, shown below, have been

classified as illegal already).

(a) A window

α1 α2 q

β1 β2 β3

such that q ∈ Q, α1, β1 ∈ Γ ∪ {#} and α2, β2 ∈ Γ, is legal if and only if either

i. q /∈ {qaccept, qreject}, α1 = β1, α2 = β2, and β3 ∈ Γ, or

ii. β3 = q ∈ {qaccept, qreject}, α1 = β1 and α2 = β2

(b) A window

α1 α2 q

β1 s β2

such that q, s ∈ Q, α1, β1 ∈ Γ ∪ {#} and α2, β2 ∈ Γ, is legal if and only if q /∈
{qaccept, qreject}, α1 = β1 and α2 = β2.

(c) A window

α1 α2 α3

β1 β2 β3

such that α1, β1 ∈ Γ ∪ {#} and α2, α3 ∈ Γ, is legal if and only if either

i. α2 = β2, α3 = β3, and either α1 = β1 = {#} or α1, β1 ∈ Γ, or

ii. α2 = β2, β3 ∈ Q, and either α1 = β1 = {#} or α1, β1 ∈ Γ.

4.6 Achieving the Fifth Condition

Finally, consider the fifth condition — that no symbol to the right of the position of the tape head

is changed when going from the configuration in one row to the configuration in the row after

that. Once again, no window shown below has been classified as illegal before this, so these

rules simply reduce the set of legal windows.

16

(a) A window

q α1 α2

β1 β2 β3

such that q ∈ Q and α1, β1, β2 ∈ Γ, and α2, β3 ∈ Γ ∪ {#} is legal if and only if q /∈
{qaccept, qreject} and α2 = β3.

(b) A window

q α1 α2

β1 s β2

such that q, s ∈ Q and α1, β1 ∈ Γ, and α2, β2 ∈ Γ ∪ {#} is legal if and only if q /∈
{qaccept, qreject} and α2 = β2.

(c) A window

q α1 α2

s β1 β2

such that q, s ∈ Q and α1, β1 ∈ Γ, and α2, β2 ∈ Γ ∪ {#} is legal if and only if α2 = β2.

(d) A window

α1 α2 α3

r β1 β2

such that α1, α2, β1 ∈ Γ, r ∈ Q, and α3, β2 ∈ Γ ∪ {#} is legal if and only if α2 = β1 and

α3 = β2.

(e) A window

α1 α2 #

β1 β2 #

such that α1, α2 ∈ Γ is legal if and only if α2 = β2.

4.7 If Fω is Satisfiable Then ω ∈ L

Lemma 6. Let ϕ be any truth assignment such that

ϕ(Fω) = T,

where Fω is as described above, and where “legal” and “illegal” windows are as specified

above.

Then ϕ specifies a well-defined assignment of values in Q ∪ Γ ∪ {#} to the cells in a two-

dimension table with T (|ω| + 1) rows and T (|ω|) + 4 columns in such a way that this table is

an accepting tableau for M on input ω.

17

Proof. Let ϕ be any truth assignment such that ϕ(Fω) = T, and where the windows that

are legal, as well as the windows that are illegal are as specified above. Lemma 5 remains

correct, even though additional windows have been identified as legal, or as illegal, since this

result was stated and proved, because none of the rules following the statement of this result

defines a window to be “legal” when it had been defined to be illegal, before this. Thus the

additional rules only reduce the set of truth assignments ϕ such that ϕ(Fω) = T.

It now follows, by this result, that, for 0 ≤ i ≤ T (n), the contents of the ith row of the table

represent a configuration ηi of M . Furthermore, η0 is the initial configuration for M and the

input string ω, because ϕ(Fstart) = T, and ηT (n) is an accepting configuration of M , because

ϕ(Faccept) = T as well. It remains only to prove that the following conditions are satisfied for

every integer i such that 0 ≤ i ≤ T (n)− 1:

• If ηi is a non-halting configuration of M then ηi ⊢M ηi+1.

• If ηi is a halting configuration of M then ηi = ηi+1.

Notice that, since the top row represents the initial configuration of M , the copy of the state

in row 0 is found in column 1. A consideration of part (ii) of the rule given in Subsection 4.3

confirms that the copy of the state in row i + 1 is at most one column farther to the right than

the copy of the state in row i, for every integer i such that 0 ≤ i ≤ T (n) − 1. This can be

used to show, by induction on i, that if 0 ≤ i ≤ T (n), and the copy of the state in row i is in

column j, then j ≤ i + 1. Thus the index of the column storing a copy of the state in row i is

j ≤ i+ 1 ≤ (T (n) + 1) ≤ T (n) + 2, for every row — the copy of the state is never to the right

of column T (n) + 2 of the table.

Once again, suppose that 0 ≤ i ≤ T (n) and suppose the copy of the state in row i is in

column j. Since the contents of each row begin and end with #, one of the following cases

must arise:

• Case: j = 1. If q is the state included in configuration ηi then window Wi,0 must have

the form
q α1

β1 β2

where α1 ∈ Γ and β1, β2 ∈ Q ∪ Γ. Furthermore, it follows by part (ii) of the rule in

Subsection 4.3 that at least one of β1 or β2 is in Q. Indeed, since row i+ 1 represents a

configuration, exactly one of these belongs to Q. Renaming the contents of cells, one of

the following subcases now applies.

– Subcase: Wi,0 has the form

q α1

s β1

18

for states q, s ∈ Q and symbols α1, β1 ∈ Γ. Since this window must be legal, it

follows by rule (a) in Subsection 4.4 that either

* (s, β1, L) ∈ δ(q, α1), or

* q ∈ {qaccept, qreject}, s = q, and α1 = β1.

Suppose, first, that (s, β1, L) ∈ δ(q, α1) (so that ηi is a non-halting configuration).

In order to show that ηi ⊢M ηi+1 and, in particular, that configuration ηi+1 can be

obtained using the fact that (s, βi, L) ∈ δ(q, α1), it is necessary and sufficient to

establish in rows i and i+ 1 have the same symbol in column j, for every integer j
such that 3 ≤ j ≤ T (n) + 2.

Now, since the table being described has at least five columns, window Wi,1 must

have the form
q α1 α2

s β1 β2

for q, s ∈ Q as above, α1, β1 ∈ Γ, and for α2, β2 ∈ Γ. Since this window is legal, it

follows by rule (c) in Subsection 4.6 that α2 = β2, so that the symbols in column 3
of rows i and i+ 1 are the same.

For 2 ≤ h ≤ T (n) window Wi,h must now have the form

σ1 σ2 σ3
τ1 τ2 τ3

where σ1, σ2, σ3, τ1, τ2, τ3 ∈ Γ. Since this window must be legal, it now follows by

rule (c) in Subsection 4.5 that σ2 = τ2 and (since τ3 /∈ Q) σ3 = τ3. Thus rows i
and i+ 1 must have the same symbol in column h+ 1 as well as in column h+ 2.

It follows that these rows have the same symbols in column j, for every integer j
such that 3 ≤ j ≤ T (n) + 2, as needed to establish that ηi ⊢M ηi+1 in this case.

Suppose, next, that q ∈ {qaccept, qreject}, s = q, and α1 = β1 (so that ηi is a

halting configuration). An application of the same rules, in essentially the same

way, establishes that rows i and i + 1 have the same value in column j, for every

integer j such that 3 ≤ j ≤ T (n) + 2 in this case as well, so that ηi+1 = ηi.

– Subcase: Wi,0 has the form

q α1

β1 s

for states q, s ∈ Q and symbols α1, β1 ∈ Γ. Since this window must be legal, it

follows by rule (b) in Subsection 4.4 that (s, β1, R) ∈ δ(q, α1). In order to show that

ηi ⊢M ηi+1 — applying the move that has been identified — it is necessary and

sufficient to show that rows i and i+1 have the same values in column j, for every

integer j such that 3 ≤ j ≤ T (n) + 2 in this case, as well.

19

Once again, since the table has at least five columns, window Wi,1 now has the

form
q α1 α2

β1 s β2

for q, s ∈ Q as above, α1, β1 ∈ Γ as above, and α2, β2 ∈ Γ. Since this window is

legal it follows by an application of rule (b) in Subsection 4.6 that α2 = β2: Rows i
and i+ 1 have the same values in column 3.

Once again, for 3 ≤ j ≤ T (n), window Wi,j must have the form

σ1 σ2 σ3
τ1 τ2 τ3

where σ1, σ2, σ3, τ1, τ2, τ3 ∈ Γ. Once again, since this window is legal, rule (c) in

Subsection 4.5 establishes that σ2 = τ2 and σ3 = τ3. This can be used to argue

that the symbols in column j of rows i and i + 1 are the same for every integer j
such that 4 ≤ j ≤ T (n) + 2, as needed to establish that ηi ⊢M ηi+1.

• Case: 2 ≤ j ≤ T (n)+1. If q is the state included in configuration ηi then window Wi,j−1

must have the form
α1 q α2

β1 β2 β3

where α1 ∈ Γ and β1, β2, β3 ∈ Q ∪ Γ. Furthermore, it follows by part (ii) of the rule in

Subsection 4.3 that at least one of β1, β2 or β3 is in Q. Indeed, since row i+1 represents

a configuration, exactly one of these belongs to Q. Renaming the contents of cells, on

of the following subcases now applies.

– Subcase: Wi,j−1 has the form

α1 q α2

s β1 β2

for states q, s ∈ Q and symbols α1, α2, β1, β2 ∈ Γ. Since this window must be

legal, it follows by rule (c) of Subsection 4.4 that (s, β2, L) ∈ δ(q, α2) and α1 = β1.

In order to show that ηi ⊢M ηi+1, where this move is used here, it is necessary and

sufficient to show that rows i and i+1 have the same entries in column h, for each

integer h such that 1 ≤ h ≤ j − 2 and such that j + 2 ≤ h ≤ T (n) + 2.

If j ≥ 4 then, for 0 ≤ h ≤ j − 4, window Wi,h has the form

σ1 σ2 σ3
τ1 τ2 τ3

20

where σ1, τ1 ∈ Γ ∪ {#}, and σ2, σ3, τ2, τ3 ∈ Γ. Since this window is legal, rule (c)

in Subsection 4.5 establishes that σ2 = τ2 and σ3 = τ3. It follows that (since j ≥ 4,

so that at least one window is considered, here) rows i and i + 1 have the same

values in column h for every integer h such that 1 ≤ h ≤ j − 2.

If j = 3 then window Wi,j−3 =Wi,0 has the form

σ1 σ2 σ3
τ1 τ2 s

where σ1 = τ1 = #, σ2, σ3, τ2 ∈ Γ, and s ∈ Q. Since this window is legal, rule (c) of

Subsection 4.5 implies that σ2 = τ2. Thus rows i and i+1 have the same values in

column 1 — that is, in every column h such that 1 ≤ h ≤ j − 2 in this case as well.

If j = 2 then rows i and i+1 have the same rows in column h such that 1 ≤ h ≤ j−2
because the claim is vacuous (that is, there is no such integer h).

The window Wi,j has the form

q σ1 σ2
τ1 τ2 τ3

for q ∈ Q as above, and σ1, τ1, τ2,∈ Γ, and σ2, τ2 ∈ Γ ∪ {#}. Since this window is

legal, it follows by rule (a) of Subsection 4.6 that σ2 = τ3, so that rows i and i + 1
have the same values in column j + 2.

If j ≤ T (n)− 1 then, for j + 1 ≤ h ≤ T (n), window Wi,h has the form

σ1 σ2 σ3
τ1 τ2 τ3

for σ1, σ2, σ3, τ1, τ2, τ3 ∈ Γ. Once again, since this window is legal, it follows by

rule (c) of Subsection 4.5 that σ2 = τ2 and σ3 = τ3. Thus (since at least one

window is considered here) it follows that rows i and i+ 1 have the same values in

column h for every integer h such that j + 2 ≤ h ≤ T (n) + 2 in this case.

If j = T (n), instead, then window Wi,j+1 =Wi,T (n)+1 has the form

σ1 σ2 #

τ1 τ2 #

for σ1, σ2, τ1, τ2 ∈ Γ. Since this window is legal it follows by rule (e) in Subsec-

tion 4.6 that σ2 = τ2 — so that rows i and i + 1 have the same values in col-

umn T (n) + 2 — that is, in every column h such that j + 2 ≤ h ≤ T (n) + 2 in this

case too.

21

Finally, if j = T (n) + 1 then rows i and i+1 have the same values in column h, for

every integer h such that j + 2 ≤ h ≤ T (n) + 2, because the claim is vacuous.

It now follows that ηi ⊢M ηi+1 in this case.

– Subcase: Wi,j−1 has the form

α1 q α2

β1 s β2

for states q, s ∈ Q and symbols α1, α2, β1, β2 ∈ Γ. Since this window must be

legal, it follows by rule (e) of Subsection 4.4 that s = q ∈ {qaccept, qreject}, α1 = β1
and α2 = β2. In order to show that ηi = ηi+1, it is necessary and sufficient to show

that rows i and i + 1 have the same entries in column h, for every integer h such

that 1 ≤ h ≤ j − 2 and such that j + 2 ≤ h ≤ T (n) + 2.

If j ≥ 3 then, for 0 ≤ h ≤ j − 3, window Wi,h has the form

σ1 σ2 σ3
τ1 τ2 τ3

where σ1, τ1 ∈ Γ ∪ {#}, and σ2, σ3, τ2, τ3 ∈ Γ. Since this window is legal, rule (c)

in Subsection 4.5 establishes that σ2 = τ2 and σ3 = τ3. Thus (since j ≥ 3, so that

at least one window is being considered) rows i and i+ 1 have the same values in

column h for every integer h such that 1 ≤ h ≤ j − 2. If j = 2 then this claim is

also satisfied because it is vacuous.

The same argument (including considerations or rule (c) in Subsection 4.4 and

rule (d) in Subsection 4.6) can be used to show that rows i and i+1 have the same

values in column h, for every integer h such that j + 2 ≤ h ≤ T (n) + 2 in this case

as well — as needed to establish that ηi = ηi+1.

– Subcase: Wi,j−1 has the form

α1 q α2

β1 β2 s

for states q, s ∈ Q and symbols α1, α2, β1, β2 ∈ Γ. Since this window must be

legal, it follows by rule (d) of Subsection 4.4 that (s, β2, R) ∈ δ(q, α2) and α1 = β1.

In order to show that ηi ⊢M ηi+1, where this move is used here. it is necessary and

sufficient to show that rows i and i+1 have the same entries in column h, for every

integer h such that 1 ≤ h ≤ j − 2 and such that j + 2 ≤ h ≤ T (n) + 2.

As above, if j ≥ 3 then, for 0 ≤ h ≤ j − 3, window Wi,h has the form

σ1 σ2 σ3
τ1 τ2 τ3

22

where σ1, τ1 ∈ Γ ∪ {#}, and σ2, σ3, τ2, τ3 ∈ Γ. Since this window is legal, rule (c)

in Subsection 4.5 establishes that σ2 = τ2 and σ3 = τ3. Once again, (since j ≥ 3,

so that at least one window is being considered) rows i and i + 1 have the same

values in column h for every integer h such that 1 ≤ h ≤ j − 2. If j = 2 then this

claim is also satisfied because it is vacuous.

Now, if j = T (n) + 1 then rows i and i + 1 have the same values in column h, for

every integer h such that j + 2 ≤ h ≤ T (n) + 2 because this claim is vacuous.

If 2 ≤ j ≤ T (n), instead, then window Wi,j has the form

q σ1 σ2
τ1 s τ2

where q, s ∈ Q, σ1, τ1 ∈ Γ and σ2, τ2 ∈ Γ ∪ {#}. Since this window is legal, it

follows by rule (b) of Subsection 4.6 that σ2 = τ2, so that rows i and i + 1 have

the same values in column j + 2. Now, if j = T (n) then it follows that rows i
and i + 1 for every integer h such that j + 2 ≤ h ≤ T (n) + 2, since every such

integer h has been considered. It therefore remains only to consider the case that

2 ≤ j ≤ T (n) − 1 — in which case, we must show that rows i and i + 1 have the

same values in column h, for every integer h such that j + 3 ≤ h ≤ T (n) + 2.

If j = T (n)− 1 then window Wi,j+2 =Wi,T (n)+1 has the form

σ1 σ2 #

τ1 τ2 #

for σ1, σ2, τ1, τ2 ∈ Γ. Since this rule is legal it follows by rule (e) of Subsection 4.6

that σ2 = τ2, so that rows i and i + 1 have the same values in column j + 3 =
T (n) + 2 — completing the proof in this case too.

It now remains only to consider the case that 2 ≤ j ≤ T (n) − 2. In this case, if

j + 2 ≤ h ≤ T (n) then window Wi,h has form

σ1 σ2 σ3
τ1 τ2 τ3

where σ1, σ2, σ3, τ1, τ2, τ3 ∈ Γ. Since this window is legal it follows by rule (c) in

Subsection 4.5 that σ2 = τ2 and σ3 = τ3. Thus rows i and i + 1 have the same

values in column h for every integer h such that j+3 ≤ h ≤ T (n)+2 — completing

the proof that ηi ⊢M ηi+1 in this final case.

Since all cases have been considered, the result now follows.

23

Now, if Fω is satisfiable then there exists a truth assignment ϕ such that ϕ(Fω) = T, so that

the conditions in Lemma 6 are satisfied. Since there can only be an accepting for M on input ω
if M accepts ω, we now have the following.

Corollary 7. If Fω is satisfiable then ω ∈ L.

4.8 If ω ∈ L Then Fω is Satisfiable

Lemma 8. If ω ∈ L then Fω is satisfiable.

Proof. Suppose that ω ∈ L. Then (if n = |ω|) there exists a sequence of configurations

η0, η1, η2, . . . , ηT (n)

such that the following properties are satisfied:

(a) η0 is the initial configuration of M for ω.

(b) If 0 ≤ i ≤ T (n)− 1 and ηi is not a halting configuration then ηi ⊢M ηi+1. If ηi is a halting

configuration, instead, then ηi = ηi+1.

(c) ηT (n) is an accepting configuration.

Recall that — using a nonstandard set of names of Boolean variables that was introduced to

make the proof more readable — Fω can be regarded as a function of Boolean variables xi,j,σ
where 0 ≤ i ≤ T (n), 0 ≤ j ≤ T (n) + 3, and σ ∈ Q ∪ Γ ∪ {#}. The above sequence of

configurations now “induces” a truth assignment ϕ as follows. For 0 ≤ i ≤ T (n) recall that ηi
can be specified as a string

ηi,0ηi,1ηi,2 . . . ηi,T (n)+3

where ηi,j ∈ Q ∪ Γ ∪ {#}, as described earlier in this document. For 0 ≤ i ≤ T (n), 0 ≤ j ≤
T (n) + 3 and σ ∈ Q ∪ Γ ∪ {#} one can now set

ϕ(xi,j,σ) =

{
T if ηi,j = σ,

F otherwise.
(4)

Recall that

Fω = (Fcell ∧ Fstart ∧ Faccept ∧ Fmove)

for subformulas F|textcell, Fstart, Faccept and Fmove as described above.

• As described above, the subformula Fcell modifies the requirement that every cell in

the two-dimensional table, being specified, stores exactly one (well-defined) value in

Q ∪ Γ ∪ {#}. It therefore follows by the definition of ϕ at line (4) that ϕ(Fcell) = T.

24

• Fstart models the requirement that the top row of the table represents the initial configu-

ration of M on the input string ω. Since η0 is this initial configuration, the definition of ϕ
at line (4) now implies that ϕ(Fstart) = T as well.

• Faccept models the requirement that the bottom row of the table represents an accepting

configuration — so, since ηT (n) is an accepting configuration, the definition of ϕ at line (4)

implies that ϕ(Faccept) = T too.

• It remains only to confirm that ϕ(Fmove) = T. Recall that

Fmove =
∧

0≤i≤T (n)−1

 ∧

0≤j≤T (n)+1

legali,j

where legali,j models the requirement that the window specifying values in rows i and i+
1, and in columns j, j +1, j +2 is a legal window, as described in Subsections 4.2–4.6.

Recall, as well, that legali,j is the disjunction (or “or”) of a sequence of subformulas listing

the legal windows for this position. It is, therefore, necessary and sufficient to confirm

that the window
ηi,j ηi,j+1 ηi,j+2

ηi+1,j ηi+1,j+1 ηi+1,j+2

for these positions, specified by the above truth assignment ϕ, satisfies one of the sub-

formulas included in legal
,i,j

— that is, this is a “legal window”.

A consideration of the rules in Subsections 4.2 and 4.3 confirms that any conditions

required by these are satisfied, simply because ϕ is a truth assignment defined using

a sequence of configurations of M . It therefore remains only to consider the rules in

Subsections 4.4, 4.5 and 4.6 to check whether the windows defined using ϕ are legal.

A reasonably straightforward — but rather long — case analysis can be used to confirm

this. To begin, one can consider an arbitrary row i such that 0 ≤ i ≤ T (n) − 1. As

argued above, since the tape head initially rests at the leftmost cell and can move right

by at most one position, every time a move is made. Thus configuration ηi is one such

that the tape head rests at a cell with distance j from the leftmost cell, where 0 ≤ j ≤ i
— and it follows that ηi,j ∈ Q for some integer j such that 1 ≤ j ≤ i + 1 ≤ T (n) + 1.

The following cases can now be considered.

i. j = 1,

ii. j = 2,

iii. 3 ≤ j ≤ T (n)− 1,

iv. j = T (n), or

v. j = T (n) + 1.

25

Let us consider the third of the above cases.

– Consider window Wi,j−1: This has the form

σ1 q σ2
ηi+1,j ηi+1,j+1 ηi+1,j+2

for σ1 = ηi,j−1 ∈ Γ, q = ηi,j ∈ Q, and σ2 = ηi,j+1 ∈ Γ. Now, if ηi is a non-halting

configuration then ηi+1 is obtained either by using a move including moving the

tape head left, or by using a move including moving the tape head right. Otherwise

ηi is a halting configuration and ηi = ηi+1. These three subcases should now be

considered.

* Subcase: ηi+1 is obtained from the non-halting configuration ηi using some

move including moving the tape head left. In particular, q /∈ {qaccept, qreject},

the fact that

(s, τ2, L) ∈ δ(q, σ2)

is being applied, for a state s ∈ Q and τ2 ∈ Γ, and window Wi,j−1 is, therefore

σ1 q σ2
r σ1 τ2

(5)

The only applicable rule in Subsections 4.4–4.6 is rule (c) in Subsection 4.4,

and a consideration of this rule confirms that this window is legal.

* Subcase: ηi+1 is obtained from the non-halting configuration ηi using some

move including moving the tape head right. In particular, q /∈ {qaccept, qreject}
the fact that

(s, τ2, R) ∈ δ(σ2)

is being applied, for a state s ∈ Q and τ2 ∈ Γ, and window Wi,j−1 is, therefore

σ1 q σ2
σ1 τ2 r

(6)

The only applicable rule in Subsections 4.4–4.6 is rule (d) in Subsection 4.4,

and a consideration of this rule establishes that the window is legal in this case

too.

* Subcase: ηi is a halting configuration and ηi = ηi+1. Thus q ∈ {qaccept, qreject}
and window Wi,j−1 is

σ1 q σ2
σ1 q σ2

(7)

26

In this case the only applicable rule in Subsections 4.4–4.6 is rule (e) in Sub-

section 4.4, and a consideration of this rule establishes that the window is legal

in this case as well.

– Consider window Wi,j−2 — noting that, since 3 ≤ j ≤ T (n) − 1, 1 ≤ j − 2 ≤
T (n) − 3 and (since either ηi = ηi+1 or ηi+1 is obtained from ηi by a move of M ,

when the tape head is to the right of this position) the same symbol from Γ must

appear in both the top and bottom row in the leftmost column of this window.

Thus if Wi,j−1 is as shown at line (5), above, then window Wi,j−2 is

σ0 σ1 q

σ0 r σ1

where σ0, σ1 ∈ Γ, q ∈ Q \ {qaccept, qreject} and r ∈ Q. The only applicable rule in

Subsections 4.4–4.6 is rule (b) in Subsection 4.5, and a consideration of this rule

confirms that this window is legal.

If Wi,j−1 is as shown at line (6), instead, then window Wi,j−2 is

σ0 σ1 q

σ0 σ1 τ2

for σ0, σ1, τ2 ∈ Γ and q ∈ Q \ {qaccept, qreject}. The only applicable rule in Subsec-

tions 4.4–4.6 is rule (a) in Subsection 4.5, and a consideration of this rule confirms

that this window is legal too.

Finally, if Wi,j−1 is as shown at line (7) then Wi,j−2 is

σ0 σ1 q

σ0 σ1 q

for σ0, σ1 ∈ Γ and q ∈ {qaccept, qreject}. As above, the only applicable rule in Sub-

sections 4.4–4.6 is rule (a) in Subsection 4.5, and this establishes that this window

is also legal.

– A consideration of the above now establishes that for 0 ≤ h ≤ j − 3, window Wi,h

has the form
σ1 σ2 σ3
σ1 σ2 τ

where σ1 ∈ Γ ∪ {#}, σ2, σ3 ∈ Γ, and either τ = σ3 or τ ∈ Q. The only applicable

rule in Subsections 4.4–4.6 is rule (c) in Subsection 4.5, which establishes that this

window is legal as well.

27

– Next consider window Wi,j . If window Wi,j−1 is as shown at line (5), above, then,

since 3 ≤ j ≤ T (n)− 1, this window has form

q σ1 σ2
τ1 τ2 σ2

where q ∈ Q \ {qaccept, qreject} and σ1, σ2, τ1, τ2 ∈ Γ. The only applicable rule in

Subsections 4.4–4.6 is rule (a) of Subsection 4.6, and it follows by this rule that this

window is legal.

If window Wi,j−1 is as shown at line (6), instead, then Wi,j has the form

q σ1 σ2
τ1 r σ2

where q ∈ Q \ {qaccept, qreject} and σ1, σ2, τ1 ∈ Γ. The only applicable rule in

Subsections 4.4–4.6 is rule (b) in Subsection 4.6, and it follows by this rule that this

window is legal too.

If window Wi,j−1 is as shown at line (7), then window Wi,j has the form

q σ1 σ2
q σ1 σ2

for q ∈ {qaccept, qreject} and σ1, σ2 ∈ Γ. The only applicable rule in Subsections 4.4–

4.6 is rule (c) in Subsection 4.6, and it follows by this rule that this window is legal

as well.

– Since 3 ≤ j ≤ T (n) − 1, it follows by the above the window Wi,j+1 has either the

form
σ1 σ2 σ3
τ1 σ2 σ3

for σ1, σ2, σ3, τ1 ∈ Γ (if window Wi,j−1 is either as shown at line (5) or at line (7)) or

has the form
σ1 σ2 σ3
r σ2 σ3

for σ1, σ2, σ3 ∈ Γ and r ∈ Q (if window Wi,j−1 is as shown at line (6)). In the first

of the cases the only applicable rule in Subsections 4.4–4.6 is rule (c) in Subsec-

tion 4.5; in the second of these cases, the only applicable rule in these subsections

is rule (d) in Subsection 4.6. In both cases the applicable rule can be used to

confirm that the window is legal.

28

– If h is an integer such that j + 2 ≤ h ≤ T (n) then window Wi,h has the form

σ1 σ2 σ3
σ1 σ2 σ3

where σ1, σ2, σ3 ∈ Γ. The only applicable rule in Subsections 4.4–4.6 is rule (c) in

Subsection 4.5, which confirms that this rule is legal.

– Finally, since j ≤ T (n)− 1, window T (n) + 1 has the form

σ1 σ2 #

σ1 σ2 #

where σ1, σ2 ∈ Γ. The only applicable rule in Subsections 4.4–4.6 in this case is

rule (e) in Subsection 4.6 — which establishes that this window is legal too.

Since all windows Wi,h have been considered such that 0 ≤ i ≤ T (n)− 1 and 0 ≤ h ≤
T (n) + 1 have been considered, all such windows are legal when 3 ≤ j ≤ T (n)− 1, as

required for this case.

The cases that j = 1, j = 2, j = T (n) and j = T (n) + 1 can all be handled in a similar way

— one can start by considering the window Wi,j−1, along with the moves that might be made,

and then move “left” as well as “right”, considering the cases which might arise. As above,

only one rule in Subsections 4.4–4.6 will be applicable, and it suffices to identify this rule and

confirm that the window is legal in order to handle each subcase that arises.

Completing the Definition of the Function f

As described in the lecture, and above, Fω is a Boolean formula defined as a function of

Boolean variables

W = {xi,j,σ | 0 ≤ i ≤ T (n), 0 ≤ j ≤ T (n) + 3, and σ ∈ Q ∪ Γ ∪ {#}}.

If we set ℓ = |Q|+ |Γ|+ 1 and order the elements of this set, so that

Q ∪ Γ ∪ {#} = {σ0, σ1, σ2, . . . , σℓ−1},

then this allows a simple way to define a function ψ : W → V , for V = {x0, x1, x2, . . . }, by

setting

ψ(xi,j,σh
) = xh+j·ℓ+i·ℓ·(T (n)+4) (8)

29

for 0 ≤ i ≤ T (n), 0 ≤ j ≤ T (n) + 3, and 0 ≤ h ≤ ℓ− 1. Indeed, this maps each variable in W
to one of the variables in the set

{xi | 0 ≤ i ≤ (T (n) + 1) · (T (n) + 4) · ℓ− 1} ⊆ V

in such a way that distinct variables in W are mapped to distinct variables in the above set.

Now, for each Boolean variable G defined over the Boolean variables in W , let Ĝ be the cor-

responding Boolean variable, defined over the Boolean variables in V , obtained by replacing

each occurrence of a variable x ∈ W by an occurrence of the corresponding variable ψ(x) ∈ V .

It is easily argued that G is satisfiable if and only if Ĝ is, for every Boolean formula G that is

defined over the variables in W . In particular, Fω is satisfiable if and only if F̂ω is satisfiable.

Now, if f : Σ⋆ → Σ⋆
F such that f(ω) is the encoding of F̂ω (as defined in Lecture #11), for

all ω ∈ Σ⋆, then it follows by Corollary 7 and Lemma 8, above, that ω ∈ L if and only if

f(ω) ∈ LFSAT, for all ω ∈ Σ⋆.

f is Computable in Polynomial Time

It remains only to prove the following, in order to complete a proof that L �P, M LFSAT.

Lemma 9. The function f : Σ⋆ → Σ⋆
F , defined above, is computable deterministically in

polynomial time.

Sketch of Proof. Let ω ∈ Σ⋆ and let n = |ω|. As noted above,

Fω = (Fcell ∧ Fstart ∧ Faccept ∧ Fmove),

so that

F̂ω = (F̂cell ∧ F̂start ∧ F̂accept ∧ F̂move)

and the encoding f(ω) = e(F̂ω) of F̂ω is simply the encodings of the subformulas F̂cell, F̂start,

F̂accept and F̂move, separated by copies of the symbol “∧” and enclosed by brackets. It therefore

suffices to argue that the encodings of each of these subformulas can be computed determin-

istically from ω, in polynomial time, to argue that the function f is computable deterministically

in polynomial time as well.

An examination of the specifications of the subformulas Fcell, Fstart and Faccept, in Subsec-

tion 4.1, should confirm (since T (n) is a fixed polynomial function of n and M is a fixed non-

deterministic Turing machine, so that |Q| and Γ can be viewed as constants) that e(F̂cell),
e(F̂start) and e(F̂accept) can all be computed deterministically from ω in polynomial time. It

therefore remains to consider the string e(F̂move).

30

Recall, again, that

Fmove =
∧

0≤i≤T (n)−1

 ∧

0≤j≤T (n)+1

legali,j

 ,

so that

F̂move =
∧

0≤i≤T (n)−1

 ∧

0≤j≤T (n)+1

l̂egali,j

 .

Furthermore, a consideration of the rules in Subsections 4.2–4.6 that there exists a string

legal ∈ (ΣF ∪ {A,B,C,D,E})⋆, whose length is polynomial in |ω| and that can be generated

from n = |ω|, deterministically in polynomial time, such that the encoding of l̂egali,j can be

obtained from this string simply by replacing the new symbols A, B, C, D and E by the

unpadded decimal representations of the integers i, i + 1, j, j + 1 and j + 2 respectively.

This can be used to argue that e(F̂move) can be computed from ω, deterministically and in

polynomial time, as needed to establish the claim.

Claim 3 is now a consequence of the results that have been stated and proved, above.

5 A Bit of History: Who Were These Guys?

Stephen Cook is an American-Canadian computer scientist who was a Professor in the De-

partment of Computer Science at the University of Toronto. Professor Cook’s 1971 paper, The

Complexity of Theorem-Proving Procedures [1], included a proof that a problem concerning

satisfiability of Boolean formulas was complete for NP with respect to polynomial-time oracle-

reducibility.

This was the first problem that was not completely “artificial” whose NP-completeness could

be established — so this was a major result at the time, and is still considered to be one

31

today. Consequently, polynomial-time oracle-reductions are also called Cook reductions in

recognition of this. Professor Cook won the ACM Turing Award in 1982. He was named as an

Officer of the Order of Canada in 2015.

Leonid Levin is a Soviet-American computer scientist who also made an extremely important

contribution here.

In the 1970’s, relations between east and west were so strained that information about the

mathematical sciences did not get communicated, very often or effectively, between one side

and the other. Consequently it was not known in the west, until years later, that Professor

Levin had discovered the existence of “reasonably natural” problems that are NP-complete,

independently of Professor Cook. The timing is so close that it is not clear who knew what

first.: While Levin’s journal article concerning this did not appear until 1973 [2], he had lectured

about this for several years before.

Professor Levin is also noted for significant contributions concerning “average-case complex-

ity.” He was awarded the Knuth Prize in 2012 for these contributions.

References

[1] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings 3rd

Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

[2] Leonid Levin. Universal search problems. Problems of Information Transmission, 9:115–

116, 1973. In Russian.

32

