
A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Computer Science 511
NP-Completeness: Classical Reductions

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #12

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Goal for Today

Goals for Today:

• Review of a process to prove that a given language is

NP-complete

• Application of this to prove the NP-completeness of

several languages

• Saying a bit more about NP-complete problems and

sources of information about this

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

NP-Completeness

• Recall that (we are saying that) a language L is NP-hard

(respectively, NP-complete) it L is hard (respectively,

complete) for the complexity class NP with respect to

polynomial-time many-one reductions.

• See Lectures #6, #7 and #10 for the definitions of

polynomial-time many-one reductions, hardness and

completeness.

• At this point in the course, only one reasonably “natural”

NP-complete language — LFSAT, which consists of

encodings of satisfiable Boolean formulas — has been

identified. The fact that this language is NP-complete was

called the “Cook-Levin theorem,” and the proof of this

result was not exactly trivial!

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Strategy for Proving NP-Completeness

Given a decision problem that you suspect to be

NP-complete...

1. If this has not already been done for you1, describe an

encoding scheme that can used to define a language L

(over some reasonable alphabet) of encodings of

Yes-instances: You will be proving that this language is

NP-complete.

1It will be done for you already on assignments and tests in this course.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Strategy for Proving NP-Completeness

2. Prove that L ∈ NP:

(a) Describe certificates for Yes-instances.

(b) Describe an encoding scheme for these certificates.

(c) Describe a verification algorithm for L.

(d) Confirm that the number of steps used by this algorithm is

at at most polynomial in the input string — not including the
length of a certificate — in the worst case. You will

generally need to confirm that all Yes-instances have short
certificates as part of this.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Strategy for Proving NP-Completeness

• Note: You do not need to describe a deterministic Turing

machine to complete step 2(d): It suffices to describe a

deterministic algorithm (generally given as pseudocode)

that could be implemented as a Java or Python program,

and that uses a number of steps polynomial in the the

length of the input string in the worst case.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Strategy for Proving NP-Completeness

3. Prove that L is NP-hard: Suppose L ⊆ Σ⋆.

(a) Choose some language, L̂ ⊆ Σ̂⋆ that is already known to be
NP-complete.

(b) Describe a well-defined total function f : Σ̂⋆ → Σ⋆ such that

• for every string ω ∈ Σ̂⋆, ω ∈ L̂ ⇐⇒ f (ω) ∈ L, and

• there is a deterministic Turing machine (which you should

describe, as pseudocode — or by giving a deterministic Java

or Python program) that computes f using at most a

polynomial number of steps (in the length of its input string)

in the worst case.

Note that it follows that L̂ �P, M L, so that L is NP-hard
since L is.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Strategy for Proving NP-Completeness

• Note: Once again, you do not need to describe a Turing

machine that computes f — but your answer should be

detailed enough so that it shows that there is a Turing

machine that computes f , using a number of steps that is

at most polynomial in the length of the input string.

4. Conclude that L is NP-complete.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Strategy for Proving NP-Completeness

One More Optional Step

• After defining encodings for instances, I often define a

language of instances LI such that L ⊆ LI ⊆ Σ⋆, including

all (valid) encodings of instances of the decision problem

being considered — and prove that LI ∈ P.

• This is not needed for a proof that L is NP-complete.

However, it can make it easier to use the fact that L is

NP-complete, when proving that other languages are also

NP-complete, later on.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

A Problem With These Examples

These notes continue with proofs that another three languages

are NP-complete.

• These proofs are too complicated to be thought of as

good examples of the kinds of proofs that students might

need to write in this course!

• They involve some of the first languages that were shown

to NP-complete after the Cook-Levin Theorem was first

presented.

• At that point only a small number of NP-complete

problems were already known — so there only a few ways

to start a proof of NP-hardness, and these proofs were

more complicated than is generally necessary, now,

because of that.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: The Problem

Consider Boolean formulas over the set of Boolean variables

V = {x0, x1, x2, . . . }, as defined in Lecture #11.

Definition:

• A literal is either a variable xi or its negation, ¬xi , for i ≥ 0

• A clause is the “or” of one more literals ℓ1, ℓ2, . . . , ℓk (for

some positive integer k):

(ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk)

• A Boolean formula F in conjunctive normal form is the

“and” of one or more clauses C1, C2, . . . , Cn (for some

positive integer n):

(C1 ∧ C2 ∧ · · · ∧ Cn)

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: The Problem

The CNF Satisfiability Problem is the following decision

problem.

CNF Satisfiability

Instance: A Boolean formula F in conjunctive

normal form

Question: Is F satisfiable?

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: Encodings

As in the previous lecture, let

ΣF = {x, 0, 1, 2, . . . , 9,∧,∨,¬, (,)}

• Each Boolean variable xi should be encoded by the string

e(xi) ∈ Σ⋆

F consisting of the letter x, followed by the

unpadded decimal representation of i .

• The other symbols (brackets, ∧, ∨, and ¬) in a Boolean

formula F in conjunctive normal form can be encoded by

themselves — so that (for example) if F is the formula

((x2 ∨ x105 ∨ ¬x3) ∧ (x11) ∧ (x1 ∨ x4 ∨ x5 ∨ x6))

then the encoding e(F) is the string

((x2 ∨ x105 ∨ ¬x3) ∧ (x11) ∧ (x1 ∨ x4 ∨ x5 ∨ x6))

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: Languages of Interest

Two languages — both subsets of Σ⋆

F — can now be defined.

• Let LCNF ⊆ Σ⋆

F be the set of encodings of Boolean

formulas F in conjunctive normal form.

• Let LCNF-SAT ⊆ LCNF be the set of encodings of satisfiable

Boolean formulas F in conjunctive normal form.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF ∈ P

Claim #1(a): LCNF ∈ P.

Sketch of Proof: Given a string ω ∈ Σ⋆

F it is possible to decide

whether ω encodes a Boolean formula in conjunctive normal

form (i.e., to decide whether ω ∈ LCNF) by sweeping over the

input string

• checking whether copies of x seen are the beginnings of

(well-formed) encodings of Boolean variables, and

• keeping track of — and matching — brackets seen, in

order to determine which Boolean operator might next be

expected to appear.

Indeed can be shown that LCNF can be decided by a

deterministic Turing machine, using a number of moves at most

linear in the length of the input string — so LCNF ∈ P.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT ∈ NP

Claim #1(b): LCNF-SAT ∈ NP .

Sketch of Proof: A certificate for a string ω ∈ LCNF-SAT —

which encodes some satisfiable Boolean formula F in

conjunctive normal form — is an encoding of a truth

assignment ϕ : V → {T,F} such that ϕ(F) = T.

• Truth assignments can be encoded using the alphabet ΣC

described in the previous lecture — and in exactly the

same way as described in that lecture: A truth

assignment ϕ is represented by encoding the finite subset

of variables S of V that appear in F and that have truth

value T under ϕ.

• It can be established (as in the previous lecture) that if

ω ∈ LCNF-SAT then there exists a certificate ν ∈ Σ⋆

C such

that |ν| ≤ |ω|+ 2.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT ∈ NP

• Consider the verification algorithm for LFSAT from the

previous lecture. This begins by checking whether the

input begins with a string ω# such that ω ∈ LF — rejecting

if this is not the case.

• If this is replaced by initial step in which one checks

whether the input begins with a string ω# such that

ω ∈ LCNF, instead (rejecting if the test fails for this case as

well) then it is straightforward to modify the analysis, from

the previous lecture, to show that the result is a

polynomial-time verification algorithm for LCNF-SAT.

• Thus LCNF-SAT ∈ NP .

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

Claim #1(c): LCNF-SAT is NP-hard.

Sketch of Proof: It will be shown that

LFSAT �P, M LCNF-SAT.

Since LFSAT is NP-hard (as shown in the previous lecture), this

implies that LCNF-SAT is NP-hard, as claimed.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

• Good News: Every Boolean formula F has a Boolean

formula F̃ , in conjunctive normal form, that is logically

equivalent to it.

• Bad News: Sometimes every Boolean formula in

conjunctive normal form that is logically equivalent to F
also has length exponential in the length of F .

• Good News: A reasonably short Boolean formula F̂ , that

depends on more variables than F , can be used to

develop the reduction on the previous slide.

In particular F̂ will depend all the Boolean variables that F
does, along with a Boolean variable2 yG for each

subformula of F .

2The new variables can be renamed, as the formula is generated, so that

F̂ only includes Boolean variables in V.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

Let us define a set SG of clauses for every subformula G of F :

• If G is a Boolean variable xi then

SG = {(yG ∨ ¬xi), (¬yG ∨ xi)}

Note: The clauses in SG are all satisfied if and only if yG
and xi have the same truth value.

• If G is ¬Ĝ for another subformula Ĝ then

SG = {(yG ∨ y
Ĝ
), (¬yG ∨ ¬y

Ĝ
)} ∪ S

Ĝ
.

Note: The clauses in {(yG ∨ y
Ĝ
), (¬yG ∨ ¬y

Ĝ
)} are both

satisfied if and only if yG and ¬y
Ĝ

have the same truth

value — which is what we want in this case.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

• If G = (G1 ∧ G2 ∧ · · · ∧ Gk) for k ≥ 1, then

SG = {(yG ∨ ¬yG1
∨ ¬yG2

∨ . . .¬yGk
)}

∪ {(¬yG ∨ yGi
) | 1 ≤ i ≤ k} ∪

⋃

1≤i≤k

SGi

Note: The clauses in the initial subset

{(yG ∨ ¬yG1
∨ ¬yG2

∨ . . .¬yGk
)}

∪ {(¬yG ∨ yGi
) | 1 ≤ i ≤ k}

are all satisfied if and only if yG and (yG1
∧ yG2

∧ · · · ∧ yGk
)

have the same truth value.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

• If G = (G1 ∨ G2 ∨ · · · ∨ Gk) for k ≥ 2,3 then

SG = {(¬yG ∨ yG1
∨ yG2

∨ · · · ∨ yGk
)}

{(yG ∨ ¬yGi
) | 1 ≤ i ≤ k} ∪

⋃

1≤i≤k

SGi

Note: The clauses in the initial subset

{(¬yG ∨ yG1
∨ yG2

∨ · · · ∨ yGk
)}

{(yG ∨ ¬yGi
) | 1 ≤ i ≤ k}

are all satisfied if and only if yG and (yG1
∨ yG2

∨ · · · ∨ yGk
)

have the same truth value.

3If k = 1 then this formula is the same as the one on the previous slide for

this case. The definitions of SG would agree, if the case k = 1 was also

included here, as well.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

Now let F̂ be the Boolean formula

(yF) ∧

∧

C∈SF

C

 .

• Note that F̂ is a Boolean formula in conjunctive normal

form.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

Lemma: F is satisfiable if and only if F̂ is satisfiable.

Proof:

Case: F is satisfiable. Then there is a satisfying truth

assignment for this Boolean formula.

• This can be extended (providing truth values for variables
yG for every subformula G) in such a way that

• the truth value of yG is the same as the truth value for G, for
every subformula G of F , and

• all the clauses in SF are satisfied.

• Since F is satisfied under the original truth assignment yF
receives the truth value “true,” so the clause (yF) is

satisfied too.

• One can see by inspection of F̂ that F̂ is satisfied too, as

required to establish that F̂ is satisfiable.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

Case: F is unsatisfiable. Consider any truth assignment ϕ for

the variables in F .

• The only way to extend this, so that all clauses in SF are

satisfied, is to set yG to have the same truth value as G has

under ϕ, for every subformula G of F .

• If truth values for the new variables are not set in this way

then F̂ is not satisfied, because F̂ includes all the clauses

in SF .

• If truth values for the new variable are set in this way, then

F̂ is not satisfied, because yF receives the truth value “F”,

and (yF) is a clause in F̂ .

• Since we started with an arbitrarily chosen truth

assignment, it follows that F̂ is unsatisfiable — as required

to establish the claim.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

• Now consider a function f : Σ⋆

F → Σ⋆ such that, for ω ∈ Σ⋆

F ,

• If ω ∈ LF and, in particular, ω = e(F) for a Boolean

formula F , then f (ω) = e(F̂) for the corresponding Boolean

formula F̂ , in conjunctive normal form, described on
previous slides,4 and

• if ω /∈ LF then f (ω) = λ, the empty string — so that
f (ω) /∈ LCNF.

• It follows by the above information that ω ∈ LFSAT if and

only if f (ω) ∈ LCNF-SAT for every string ω ∈ Σ⋆

F .

4
. . .with variables renamed, so that this a formula with variables in V, as

previously noted. . .

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

Lemma: The above function f is computable using a number of

steps that is at most polynomial in the length of the input string.

Idea of Proof:

• The algorithm from the previous lecture, to decide

membership of a string in LF, can modified to compute f .

• Instead of replacing a string (representing a subformula)

with “F” one can replace this with the new variable whose

truth value should match that of the subformula being

processed. Corresponding clauses, that will be included

in F , should be added to a set of these, which is being

maintained, at the same time.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Hard

• If it is determined, during that the input string is not in LF,

then the computation should halt with the empty string on

the output tape. If is determined, instead, that the input

belongs to LF, then the set of clauses now assembled can

be used to generate an encoding of e(F).

• The process is simple enough to be implemented using a

multi-tape deterministic using a number of moves that is at

most cubic in the length of the input string, as needed to

establish the claim.

It follows, by the last two lemmas, that LFSAT �P, M LCNF-SAT.

Since LFSAT is NP-hard this implies that LCNF-SAT is NP-hard

too.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

CNF-Satisfiability: LCNF-SAT is NP-Complete

• It has now been shown that LCNF-SAT ∈ NP and that

LCNF-SAT is NP-hard.

• It follows that LCNF-SAT is NP-complete.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: The Problem

Definition: A Boolean formula F in conjunctive normal form is

in 3-conjunctive normal form — and also called a 3-CNF

formula — if every clause in F includes exactly literals, so F
has the form

((ℓ1,1 ∨ ℓ1,2 ∨ ℓ1,3) ∧ (ℓ2,1 ∨ ℓ2,2 ∨ ℓ2,3) ∧ . . .

∧ (ℓk ,1 ∨ ℓk ,2 ∨ ℓk3))

for some positive integer k and where ℓi ,j is a literal — either xh

or ¬xh for h ∈ N.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: The Problem

The 3-CNF Satisfiability Problem is the following decision

problem.

CNF Satisfiability

Instance: A Boolean formula F in 3-conjunctive

normal form

Question: Is F satisfiable?

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: Encodings

• Instances of this problem are also instances of the CNF

Satisfiability Problem, and they can be encoded in exactly

the same way.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: Languages of Interest

Two languages — both subsets of Σ⋆

F — can now be defined.

• Let L3CNF ⊆ Σ⋆

F be the set of encodings of Boolean

formulas F in 3-conjunctive normal form.

• Let L3CNF-SAT ⊆ L3CNF be the set of encodings of satisfiable

Boolean formulas F in 3-conjunctive normal form.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF ∈ P

Claim #2(a): L3CNF ∈ P.

How To Prove This:

• It suffices to modify the deterministic algorithm to decide

the language LCNF, already described, by making one

change. Recall that this makes a linear sweep over the

input.

• The only change is to add a test that each clause, found

during the sweep , includes exactly three literals. The input

should be accepted if the original algorithm would accept

it, and this additional test would also be passed. The

output should be rejected otherwise.

• The correctness and efficiency of the modified process are

easily proved.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT ∈ NP

Claim #2(b): L3CNF-SAT ∈ NP .

How To Prove This:

• The polynomial-time verification algorithm for LCNF-SAT,

already described, is easily modified to produce a

polynomial-time verification algorithm for L3CNF-SAT.

• The only difference is that a test whether ω ∈ LCNF, in the

original algorithm, should be replaced with a test whether

ω ∈ L3CNF in the new one.

• Correctness can be established by an examination of the

original algorithm and a review of the proof of its

correctness. Efficiency can be established using

Claim #2(a).

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Claim #2(c): L3CNF-SAT is NP-hard.

Sketch of Proof: It will be shown that

LCNF-SAT �P, M L3CNF-SAT.

Since LCNF-SAT is NP-hard (by Claim #1(c)), this implies that

L3CNF-SAT is NP-hard, as claimed.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

• Consider a total function f : Σ⋆

F → Σ⋆

F with the following

properties:

• If ω ∈ Σ⋆

F but ω does not encode a Boolean formula in

conjunctive normal form — so that ω /∈ LCNF-SAT — then
f (ω) = λ (the empty string), so that f (ω) /∈ L3CNF-SAT.

• If ω ∈ Σ⋆

F does encode a Boolean formula F in conjunctive

normal form, then f (ω) encodes a Boolean formula F̂ in

3-conjunctive normal form such that F is satisfiable if and
only if F̂ is satisfiable.

Then ω ∈ LCNF-SAT if and only if f (ω) ∈ L3CNF-SAT for all

ω ∈ Σ⋆

F

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

• Good News: Once again a reasonably short Boolean

formula F̂ , that depends on more variables than F , can be

used to define the function f described in the previous

slide.

• Even Better News: The reduction to be described next is

much simpler than the previous one.

• Once again, the first version of F̂ will include Boolean

variables with names different from xi for i ∈ N. The same

kind of “preprocessing” step, and use of global variable

next, allows the new variables to be renamed, on the fly,

so that this is not the case.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Recall that F has the form

(C1 ∧ C2 ∧ · · · ∧ Cn)

where Ci is a clause for 1 ≤ i ≤ n.

Strategy: We will do the following.

(a) Use Ci to define a set Si of clauses, each including three

literals, for 1 ≤ i ≤ n.

(b) Set

F̂ =

 ∧

1≤i≤n

∧

c∈Si

c

— noting that F̂ is a Boolean formula in 3-conjunctive

normal form.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

(c) Prove that F is satisfiable if and only if F̂ is.

(d) Note that the structure of F̂ and process used to define it is

so simple that the function f can be computed using either

a deterministic Java or Python program, or a deterministic

Turing machine, using a number of steps that is at most

polynomial in the length of the input string in the worst

case.

It will then follow that LCNF-SAT �P, M L3CNF-SAT, implying that

L3CNF-SAT is NP-hard.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Defining Si When Ci Only Includes One Literal:

If Ci is a clause (ℓ), where ℓ is a literal, then

Si = {(ℓ ∨ ℓ ∨ ℓ)}

• A truth assignment satisfies Ci if and only if it satisfies all

the clauses in Si .

This will be true for next two cases too.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Defining Si When Ci Includes Exactly Two Literals:

If Ci is a clause (ℓ1 ∨ ℓ2), for literals ℓ1 and ℓ2, then

Si = {(ℓ1 ∨ ℓ2 ∨ ℓ2)}

Defining Si When Ci Includes Exactly Three Literals:

If Ci is a clause (ℓ1 ∨ ℓ2 ∨ ℓ3) for literals ℓ1, ℓ2 and ℓ3, then

Si = {(ℓ1 ∨ ℓ2 ∨ ℓ3)} = {Ci}

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Defining Si When Ci Includes Four or More Literals:

If Ci is a clause (ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk) for literals ℓ1, ℓ2, . . . , ℓk where

k ≥ 4, introduce new variables zi ,1, zi ,2, . . . , zi ,k−3 — which will

only appear in the clauses included in Si .

Si = {(ℓ1 ∨ ℓ2 ∨ zi ,1)} ∪
⋃

1≤j≤k−4

{(¬zi ,j ∨ ℓj+2 ∨ zi ,j+1)}

∪ {(¬zi ,k−3 ∨ ℓk−1 ∨ ℓk)}

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Examples:

• If k = 4 then Si = {(ℓ1 ∨ ℓ2 ∨ zi ,1), (¬zi ,1 ∨ ℓ3 ∨ ℓ4)}

• If k = 5 then

Si = {(ℓ1 ∨ ℓ2 ∨ zi ,1), (¬zi ,1 ∨ ℓ3 ∨ zi ,2), (¬zi ,2 ∨ ℓ4 ∨ ℓ5)}

• If k = 6 then

Si = {(ℓ1 ∨ ℓ2 ∨ zi ,1), (¬zi ,1 ∨ ℓ3 ∨ zi ,2),

(¬zi ,2 ∨ ℓ4 ∨ zi ,3), (¬zi ,3 ∨ ℓ5 ∨ ℓ6)}

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Lemma: Every truth assignment that satisfies Ci can be

extended — by assigning truth values to zi ,1, zi ,2, . . . , zi ,k−3 —

to produce a truth assignment that satisfies all the clauses in Si .

Proof: Consider three cases — one of which must arise.

Case: One of ℓ1 or ℓ2 is satisfied under the truth assignment.

• The first clause included in Si , (ℓ1 ∨ ℓ2 ∨ zi ,1), is satisfied.

• Setting the truth values of all or zi ,1, zi ,2, . . . , zi ,k−3 to be F

ensures that all the other clauses in Si are satisfied too,

because each includes a literal ¬zi ,j where 1 ≤ j ≤ k − 3.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Case: The first of ℓ1, ℓ2, . . . , ℓk satisfied is ℓj , where

3 ≤ j ≤ k − 2.

• The only clause in Si including ℓj is (¬zi ,j−2 ∨ ℓj ∨ zj−1), and

this clause is satisfied.

• Setting the truth of zi ,1, zi ,2, . . . , zi ,j−2 to be T and the truth

value of zi ,j−1, zi ,j , . . . , zi ,k−2 to be F ensures that all the

other clauses in Si are satisfied too: The ones before this

one in the natural ordering for Si each include a literal zi ,h

where 1 ≤ h ≤ j − 2, and the ones after it includes a literal

¬zi ,h where j − 1 ≤ h ≤ k − 3.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Case: The first of ℓ1, ℓ2, . . . , ℓk satisfied is either ℓk−1 or ℓk .

• The last clause in Si , (¬zi ,k−3 ∨ ℓk−1 ∨ ℓk), is satisfied.

• Setting the true value for zi ,1, zi ,2, . . . , zi ,k−3 to be T ensures

that all the other clauses in Si are satisfied too, because

each includes one of zi ,1, zi ,2, . . . , zi ,k−3 as a literal.

Since the desired result has been established in all possible

cases, this establishes the claim.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

Lemma: It is impossible to extend a truth assignment that does

not satisfy Ci , by setting truth values for zi ,1, zi ,2, . . . , zi ,k−3, in

order to satisfy all of the clauses in Si .

Proof:

• It is necessary to set zi ,1 to be T to satisfy the first clause,

(ℓ1 ∨ ℓ2 ∨ zi ,1).

• For j = 2,3, . . . , zk−3 it is now necessary to set zi ,j to be T

the satisfy a later clause, (¬zi ,j−1 ∨ ℓi ,j+1 ∨ zi ,j).

• However, truth values for all variables have now been set

and the final clause, (¬zi ,k−3 ∨ ℓk−1 ∨ ℓk), is not satisfied.

Corollary: F is satisfiable if and only if F̂ is satisfiable.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Hard

• It has already been claimed that L3CNF ∈ P, so that one

can check whether an input string ω ∈ Σ⋆

F is in L3CNF,

setting f (ω) to be λ if it is not, using a deterministic Turing

machine in polynomial time.

• An encoding of F̂ using extra variables zi ,j can be

generated deterministically in polynomial time —

essentially, using a single sweep over the encoding of F .

• Renaming of variables to complete the process can be

carried out by finding the largest integer i such that xi

appears in F , and then replacing new variables with

xi+1, xi+2, . . . — also using at most a polynomial number of

steps in the length of the input..

• Thus f can be computed deterministically in polynomial

time, so that LCNF-SAT �P, M L3CNF-SAT. Since LCNF-SAT is

NP-hard, it follows that L3CNF-SAT is NP-hard too.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

3-CNF Satisfiability: L3CNF-SAT is NP-Complete

• It has now been shown that L3CNF-SAT ∈ NP and that

L3CNF-SAT is NP-hard.

• It follows that L3CNF-SAT is NP-complete.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: The Problem

Suppose G = (V ,E) is an undirected graph.

Definition: A clique in G is a subset C of V such that

(u, v) ∈ E for all vertices u and v such that u, v ∈ C and u 6= v .

Consider the following decision problem:

k-Clique

Instance: An undirected graph G = (V ,E) and

a positive integer k

Question: Does G have a clique with size (at least) k?

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Encodings

Consider an alphabet

ΣG = {v, 0, 1, 2, . . . , 9, ,, (,), {, }}

This will be used to encode instances of this decision problem.

• Renaming vertices if needed, suppose (or require) that

V = {v0, v1, . . . , vn−1} for some positive integer n.

• For 1 ≤ i ≤ n, each vertex vi has an encoding e(vi) ∈ Σ⋆

G:

e(vi) is the letter v followed by the unpadded decimal

representation of the index i — v0 if i = 0.

• Note: Suppose V 6= ∅, because this annoying special case

is not important.

Then n ≥ 1 and each of the above encodings is a

nonempty string with length at most ⌈log10 n⌉+ 1.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Encodings

• Since G is an undirected graph every edge can be written

as (vi , vj) where 0 ≤ i < j ≤ n − 1. The encoding e((vi , vj))
of this vertex begins with a left bracket, “(”, continues with

e(vi), a comma, “,”, e(vj), and ends with a right bracket,

“)”.

• Note: This is a nonempty string with length at most

2⌈log10 n⌉+ 5.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Encodings

• The encoding e(E) of the set of edges E
• starts with a left bracket,
• continues with the encodings of each edge, separated by

commas, in nondecreasing order of first vertex and, when
the first vertices are the same, increasing order of second

vertex, and
• ends with a right bracket.

Note: Since there are at most
(

n
2

)
edges this is a string

with length at most n2⌈log10 n⌉+ 3n2.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Encodings

The encoding e(G) of an undirected graph G = (V ,E), consists

of

• A left bracket, “(”,

• The number n of vertices in V — encoded in unary (as a

string of n 1’s),

• A comma, ,

• The encoding e(E) of the set of edges, as described

above, and

• A right bracket, “)”

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Encodings

The encoding of an instance of the k-Clique problem consists

of

• A left bracket, “(”,

• The encoding e(G) of the input graph G = (V ,E), as

described above,

• A comma, “)”,

• The unpadded decimal representation of the input

integer k , and

• A right bracket, “)”

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Languages of Interest

Two languages — both subsets of Σ⋆

G — can now be defined.

• Let LGraph+Bound ⊆ Σ⋆

G be the set of encodings of instances

of the k-Clique problem — that is, encodings of undirected

graphs and positive integers, as described above.

• Let Lk -Clique ⊆ LGraph+Bound be the set of Yes-instances of

the “k-Clique” problem — that is, the set of encodings of

undirected graphs G = (V ,E) and positive integers k such

that G has a clique with size at least k .

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: LGraph+Bound ∈ P

Exercise:

(a) Use the description of encodings of undirected graphs,

given above, to describe whether a string µ ∈ Σ⋆

G is an

encoding of an undirected graph, deterministically, using a

number of steps that is at most polynomial in the length of

the input string µ.

(b) Use this to complete a proof that LGraph+Bound ∈ P.

By doing so, you will have proved

Claim #3(a): LGraph+Bound ∈ P.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique ∈ NP

• A string µ ∈ Σ⋆

G such that µ /∈ LGraph+Bound is certainly not

in Lk -Clique.

• A string µ ∈ Lk -Clique encoding an undirected graph

G = (V ,E) and a positive integer k such that k > |V | is

also certainly not in Lk -Clique, either.

• It therefore suffices to consider encodings of undirected

graphs G = (V ,E) and positive integers k such that

k ≤ |V |.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique ∈ NP

• An encoding of a clique in G with size at least k will be

used as a certificate for a string ω ∈ L3-CNFSAT that

encodes a graph G = (V ,E) and positive integer k .

• Since ΣG includes all the symbols needed to encode sets

of vertices in G we can set ΣC to be ΣG.

• A clique can then be encoded as a subset of vertices in G

— sorted by increasing index, to make it easier to confirm

that a subset of V really is being encoded.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique ∈ NP

Exercise: Use the above information to complete a proof that

Lk -Clique ∈ NP by describing a verification algorithm for this

language, and proving that it solves the problem that is

supposed to, using a number of moves that is bounded as

required.

By doing so, you will have proved

Claim #3(b): Lk -Clique ∈ NP .

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

Claim #3(c): Lk -Clique is NP-hard.

Sketch of Proof: It will be shown that

L3CNF-SAT �P, M Lk -Clique.

Since L3CNF-SAT is NP-hard (by Claim #2(c)), this implies that

Lk -Clique is NP-hard, as claimed.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

Consider a Boolean formula F in 3-conjunctive normal form —

so that F has the form

((ℓ1,1 ∨ ℓ1,2 ∨ ℓ1,3) ∧ (ℓ2,1 ∨ ℓ2,2 ∨ ℓ2,3) ∧ . . .

∧ (ℓm,1 ∨ ℓm,2 ∨ ℓm,3))

for some positive integer m, and where ℓi ,j is a literal for

1 ≤ i ≤ m and 1 ≤ j ≤ 3.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

• Consider an undirected graph G = (V ,E) with 3m vertices:
For 1 ≤ i ≤ m,

• Vertex v3i−3 corresponds to the literal ℓi,1,
• vertex v3i−2 corresponds to the literal ℓi,2, and
• vertex v3i−1 corresponds to the literal ℓi,3.

Then every vertex in V corresponds to exactly one literal

in F .

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

• For 0 ≤ s, t ≤ 3m − 1 include (vs, vt) in E if and only if
both of the following properties are satisfied:

(a) vs and vt correspond to different clauses in F , so

⌊s/3⌋ 6= ⌊t/3⌋, and

(b) the literals ℓ and ℓ̂ corresponding to vs and vt are not

inconsistent — that is, it is not true that one of them is xh

and the other is ¬xh, for any h ∈ N.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

Example: Suppose F is the 3-CNF Boolean formula

((x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ x3)

∧ (¬x1 ∨ x2 ∨ x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4))

Then

• v0 corresponds to the literal ℓ11 = x1

• v1 corresponds to the literal ℓ1,2 = x2

• v2 corresponds to the literal ℓ1,3 = x3

• v3 corresponds to the literal ℓ2,1 = x1

• v4 corresponds to the literal ℓ2,2 = ¬x2

• v5 corresponds to the literal ℓ2,3 = x3

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

• v6 corresponds to the literal ℓ3,1 = ¬x1

• v7 corresponds to the literal ℓ3,2 = x2

• v8 corresponds to the literal ℓ3,3 = x4

• v9 corresponds to the literal ℓ4,1 = ¬x1

• v10 corresponds to the literal ℓ4,2 = ¬x2

• v11 corresponds to the literal ℓ4,3 = ¬x4

and G is as shown on the following slide; k = 4.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

v
0

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

v
9

v
10

v
11

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

Lemma: If F is satisfiable then G has a clique with size k .

Proof: Since F is satisfiable, it has a satisfying truth

assignment — so it is possible to pick a literal ℓi ,j (for 1 ≤ j ≤ 3)

that is satisfied under this truth assignment, for each integer i

such that 1 ≤ i ≤ m = k .

It follows by the definition of the set of edges included in E ,

above, that the set of vertices corresponding to these literals

forms a clique with size k , as required.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

Lemma: If G has a clique with size k then F is satisfiable.

Proof: Consider a clique C of G with size k .

• Since k = m (the number of clauses in F) property (a) in

the rule for inclusion of edges in E ensures that C includes

a vertex corresponding a literal to each one of the clauses

in F .

• Property (b) ensures that xh and ¬xh are not both in the set

of literals corresponding to vertices in C for any natural

number h.

• It is therefore possible to define a truth assignment that

satisfies all these literals — and (regardless of truth

assignments for any other Boolean variables) that ensures

that F is satisfied under this truth assignment — so that F
is satisfiable, as claimed.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Hard

Corollary: G has a clique with size (at least) k if and only if F
is satisfiable.

Exercise:

• Supplying additional technical details. and describing and

analyzing any algorithm (or Turing machine) that is

required, use this information to complete a proof that

L3CNF-SAT �P, M Lk -Clique.

• Since L3CNF-SAT is NP-hard, it follows from this that

Lk -Clique is NP-hard too.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

k -Clique: Lk -Clique is NP-Complete

• It has now been argued that Lk -Clique ∈ NP and that

Lk -Clique is NP-hard.

• It follows that Lk -Clique is NP-complete.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Other NP-Complete Problems

• Chapter 34 of the third edition of Introduction to Algorithms

includes an introduction to several other “classical”

NP-complete problems and sketches of proofs that they

are NP-complete. This is available as an ebook from the

University of Calgary library.

• Computers and Intractability: A Guide to the Theory of

NP-Completeness is an excellent older reference that

includes information about how one can prove that a

language is NP-complete and that describes many more

NP-complete problems. This is available at the University

of Calgary library.

A Process CNF-Satisfiability 3-CNF Satisfiability k -Clique Other Problems Common Mistakes

Mistakes To Watch for and Avoid

• Students will be asked to prove that languages are

NP-complete on assignments and tests. The proofs that

are required will be much simpler and shorter than the first

proof in these notes! Indeed, they might be simpler than

the other proofs in these notes too.

• Common mistakes you should watch for and avoid include
• giving a reduction in the wrong direction

• failing to ensure that there is a certificate with polynomial

length when proving membership in NP
• failing to ensure that the function f : Σ⋆

1 → Σ⋆

2 (used to
define a reduction) is

• a well-defined total function, and
• computable by a deterministic algorithm using a number of

steps that is at most polynomial in the length of the input

string in the worst case.

	A Process
	CNF-Satisfiability
	3-CNF Satisfiability
	k-Clique
	Other Problems
	Common Mistakes

