Lecture \#12: Classical Reductions Exercises and Review

Additional Exercises

1. A Boolean formula \mathcal{F} is in 4-conjunctive normal form if \mathcal{F} and every clause in \mathcal{F} includes exactly four literals. If the same encoding scheme for Boolean formulas (as strings in Σ_{F}^{\star}) is used as in recent lectures, then one can define

- a language $L_{4 \mathrm{CNF}} \subseteq \Sigma_{F}^{\star}$ of encodings of Boolean formulas in 4-conjunctive normal form, and
- a language $L_{4 \mathrm{CNF} \text {-SAT }} \subseteq L_{4 \mathrm{CNF}}$ of encodings of satisfiable Boolean formulas in 4 conjunctive normal form.

Prove that $L_{4 \mathrm{CNF}} \in \mathcal{P}$ and that $L_{4 \mathrm{CNF} \text {-SAT }}$ is $\mathcal{N} \mathcal{P}$-complete.
2. If $G=(V, E)$ is an undirected graph then a graph $\widehat{G}=(\widehat{V}, \widehat{E})$ is a subgraph of G if $\widehat{V} \subseteq V$ and $\widehat{E} \subseteq E$.

A pair of undirected graphs, $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, are isomorphic if there is a bijective function $f: V_{1} \rightarrow V_{2}$ such that, for all vertices $u, v \in V_{1},(u, v) \in E_{1}$ if and only if $(f(u), f(v)) \in E_{2}$.

Suppose that undirected graphs are encoded, as strings over the alphabet Σ_{G}, as described in the lecture notes for Lecture \#12. Then a pair of undirected graphs, G_{1} and G_{2}, can be encoded as a string over the alphabet Σ_{G} consisting of the encodings of G_{1} and G_{2}, separated by a comma.
Consider the following languages:

- $L_{2 \text { Graphs }} \subseteq \Sigma_{G}^{\star}$ is the set of encodings of pairs of undirected graphs.
- $L_{\text {Subgraphlso }} \subseteq L_{2 \text { Graphs }}$ is the set of encodings of ordered pairs of subgraphs, G_{1} and G_{2}, such that G_{2} is isomorphic to a subgraph of G_{1}.

Prove that $L_{2 \text { Graphs }} \in \mathcal{P}$ and that $L_{\text {Subgraphiso }}$ is $\mathcal{N} \mathcal{P}$-complete.

Questions for Review

1. Describe a recommended process that can now be followed to prove that a given language $L \subseteq \Sigma^{\star}$ is $\mathcal{N} \mathcal{P}$-complete.
How do you use this when you are a given a description of a decision problem to start with, instead of a language?
2. Describe Boolean formulas that are in conjunctive normal form. What is the CNF Satisfiability Problem and what is known about the complexity of this problem?
3. Describe Boolean formulas that are in 3-conjunctive normal form. What is the 3-CNF Satisfiability Problem and what is known about the complexity of this problem?
4. What is the \boldsymbol{k}-Clique Problem, and what is known about the complexity of this problem?
5. How does the process of "proving $\mathcal{N} \mathcal{P}$-completeness" change as one discovers more, and more, languages that are provably $\mathcal{N} \mathcal{P}$-complete? What part of this process can become more complicated? What part of the process can become easier?
