Lecture #12: Classical Reductions Exercises and Review

Additional Exercises

- A Boolean formula *F* is in 4-conjunctive normal form if *F* and every clause in *F* includes exactly *four* literals. If the same encoding scheme for Boolean formulas (as strings in Σ^{*}_F) is used as in recent lectures, then one can define
 - a language L_{4CNF} ⊆ Σ^{*}_F of encodings of Boolean formulas in 4-conjunctive normal form, and
 - a language L_{4CNF-SAT} ⊆ L_{4CNF} of encodings of *satisfiable* Boolean formulas in 4conjunctive normal form.

Prove that $L_{4CNF} \in \mathcal{P}$ and that $L_{4CNF-SAT}$ is \mathcal{NP} -complete.

2. If G = (V, E) is an undirected graph then a graph $\widehat{G} = (\widehat{V}, \widehat{E})$ is a *subgraph* of *G* if $\widehat{V} \subseteq V$ and $\widehat{E} \subseteq E$.

A pair of undirected graphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, are *isomorphic* if there is a bijective function $f : V_1 \to V_2$ such that, for all vertices $u, v \in V_1$, $(u, v) \in E_1$ if and only if $(f(u), f(v)) \in E_2$.

Suppose that undirected graphs are encoded, as strings over the alphabet Σ_G , as described in the lecture notes for Lecture #12. Then a pair of undirected graphs, G_1 and G_2 , can be encoded as a string over the alphabet Σ_G consisting of the encodings of G_1 and G_2 , separated by a comma.

Consider the following languages:

- L_{2Graphs} ⊆ Σ^{*}_G is the set of encodings of pairs of undirected graphs.
- $L_{\text{Subgraphlso}} \subseteq L_{2\text{Graphs}}$ is the set of encodings of ordered pairs of subgraphs, G_1 and G_2 , such that G_2 is *isomorphic to a subgraph of* G_1 .

Prove that $L_{2Graphs} \in \mathcal{P}$ and that $L_{SubgraphIso}$ is \mathcal{NP} -complete.

Questions for Review

1. Describe a recommended *process* that can now be followed to prove that a given language $L \subseteq \Sigma^*$ is \mathcal{NP} -complete.

How do you use this when you are a given a description of a *decision problem* to start with, instead of a language?

- Describe Boolean formulas that are in *conjunctive normal form*. What is the *CNF* Satisfiability Problem and what is known about the complexity of this problem?
- 3. Describe Boolean formulas that are in *3-conjunctive normal form*. What is the *3-CNF Satisfiability Problem* and what is known about the complexity of this problem?
- 4. What is the *k*-Clique Problem, and what is known about the complexity of this problem?
- 5. How does the process of "proving \mathcal{NP} -completeness" change as one discovers more, and more, languages that are provably \mathcal{NP} -complete? What part of this process can become more complicated? What part of the process can become easier?