Lecture #12: Classical Reductions Lecture Presentation

When defining Boolean formulas in 3-*conjunctive normal form*, we allowed clauses in a formula to include more than one copy of the same literal — so that, for example,

 $((\neg x_1 \lor \neg x_1 \lor x_2) \land (x_1 \land \neg x_2 \land x_1))$

is a Boolean formula in 3-conjunctive normal form.

Suppose we change the definition of "3-conjunctive normal form" to make this more restrictive, by requiring that the three literals in each clause must be distinct. Then the above formula would *not* be in 3-conjunctive normal form.

Now let \hat{L}_{3CNF} be the language of instances of the "3-CNF Satisfiability" problem, and let $\hat{L}_{3CNF-SAT}$ be the language of Yes-instances of the "3-CNF Satisfiability" problem, when this more restrictive definition of a Boolean formula in 3-conjunctive normal form is used. Then \hat{L}_{3CNF} is a proper subset of L_{3CNF} , and $\hat{L}_{3CNF-SAT}$ is a proper subset of $L_{3CNF-SAT}$.

The goal of this exercise is to prove that $\widehat{L}_{3CNF} \in \mathcal{P}$ and $\widehat{L}_{3CNF-SAT}$ is \mathcal{NP} -complete.

Proving That $\widehat{L}_{3CNF} \in \mathcal{P}$:

Proving That $\widehat{L}_{\texttt{3CNF-SAT}} \in \mathcal{NP}$:

Proving That $\widehat{L}_{\texttt{3CNF-SAT}}$ is \mathcal{NP} -Hard: