Lecture \#12: Classical Reductions Lecture Presentation

When defining Boolean formulas in 3-conjunctive normal form, we allowed clauses in a formula to include more than one copy of the same literal - so that, for example,

$$
\left(\left(\neg x_{1} \vee \neg x_{1} \vee x_{2}\right) \wedge\left(x_{1} \wedge \neg x_{2} \wedge x_{1}\right)\right)
$$

is a Boolean formula in 3-conjunctive normal form.
Suppose we change the definition of " 3 -conjunctive normal form" to make this more restrictive, by requiring that the three literals in each clause must be distinct. Then the above formula would not be in 3 -conjunctive normal form.
Now let $\widehat{L}_{3 C N F}$ be the language of instances of the " 3 -CNF Satisfiability" problem, and let $\widehat{L}_{3 C N F-S A T}$ be the language of Yes-instances of the " 3 -CNF Satisfiability" problem, when this more restrictive definition of a Boolean formula in 3 -conjunctive normal form is used. Then $\widehat{L}_{3 C N F}$ is a proper subset of $L_{3 C N F}$, and $\widehat{L}_{3 C N F-S A T}$ is a proper subset of $L_{3 C N F-S A T}$.
The goal of this exercise is to prove that $\widehat{L}_{3 C N F} \in \mathcal{P}$ and $\widehat{L}_{3 C N F}$ SAT is $\mathcal{N P}$-complete.

Proving That $\widehat{L}_{3 \mathrm{CNF}} \in \mathcal{P}$:

Proving That $\widehat{L}_{3 \text { CNF-SAT }} \in \mathcal{N} \mathcal{P}$:

Proving That $\widehat{L}_{3 C N F-S A T}$ is $\boldsymbol{\mathcal { N } \mathcal { P } \text { -Hard: }}$

