
Lecture #12: Classical Reductions

Proofs of Claims

Once again, this document is primarily “for interest only,” that is, for students introduced in more

details about the material included in the lecture notes.

1 Completing a Proof that LFSAT �P, M LCNF-SAT

Consider the reduction from LFSAT to LCNF-SAT described, at a high level, in the notes for

Lecture #12. The goal of this section is to describe, in more detail, an algorithm that can be

used to compute the function f : Σ⋆
F → Σ⋆

F described in these notes, and to sketch a proof

that this can be implemented using a deterministic multi-tape Turing machine, using a number

of moves that is at most polynomial in the length of the input string.

During the description of the algorithm being presented, a trace of execution will be provided

on an input formula

((¬(x1 ∨ ¬x4) ∧ x5) ∨ x2).

1.1 Notation: Renaming Variables

Consider an input string ω ∈ Σ⋆
F . As described in the previous lecture LF ∈ P, so it is possible

to decide whether ω ∈ LF using time at most polynomial in |ω|. It this is not the case then

the empty string λ should be returned as output (by having this as the non-blank string on an

output tape).

Suppose, instead, that ω ∈ LF. Let F be the formula, defined over the set of Boolean variables

V = {x0, x1, x2, . . . }, that is encoded by ω.

In this construction a new Boolean variable yG will be used for each subformula G of F , and a

formula F̂ will be obtained over the set of variables

W = V ∪ {yG | G is a subformula of F}.

1

Suppose that F has ℓ subformulas G1,G2, . . . ,Gℓ, so that W = V ∪ {yGi
| 1 ≤ i ≤ ℓ}.

Since only finitely many variables appear in F , there exists an integer k ≥ 0 such that xk
appears in F but xh does not appear in F for any integer h such that h > k. Thus the truth

value of F , under a truth assignment ϕ, only depends on the truth values that ϕ assigns to the

variables in the set

Vk = {x0, x1, x2, . . . xk}

— and the only variables that appear in the formula F in conjunctive normal form being con-

sidered, here, belong to the finite set

Ŵ = Vk ∪ {yG | G is a subformula of F} = {x0, x1, x2, . . . , xk} ∪ {yG1
, yG2

, . . . , yGℓ
}.

Now, in order to obtain a reduction to LCNFSAT, we must map F to a Boolean formula in con-

junctive normal form that only depends on the variables in V , instead. In order to obtain this,

consider a map ψ : Ŵ → V such that

• ψ(xi) = xi for every integer i such that 0 ≤ i ≤ k, and

• ψ(yGj
) = xk+j for every integer j such that 1 ≤ j ≤ ℓ.

Then ψ is a well-defined mapping from Ŵ to V such that distinct variables in Ŵ are mapped

to distinct variables in V — this is an “injective function”.

This renaming is completed by extending ψ to be a function defined over Boolean formulas, as

well: For any Boolean formula Ĝ defined on the variables in Ŵ , let ψ(Ĝ) be the corresponding

Boolean formula that is obtained by replacing each occurrence of a variable z ∈ Ŵ with the

corresponding variable ψ(z) ∈ V — so that ψ(Ĝ) is defined over the variables in V . Then

ψ(Ĝ) is satisfiable if only if Ĝ is.

Rather than generating the formula F̂ described in the lecture notes, the algorithm presented

here will rename variables “on the fly” so that it is only working with variables in V and is

generating the corresponding formula ψ(F̂), instead.

1.2 Invariant to be Maintained

As described in the lecture notes, a set SG of clauses (that are defined over the set of Boolean

variables in W) is defined for each subformula G of F . These clauses are defined so that a

truth assignment ϕ : V → {T, F} can only be extended, in such a way that the clauses in this

set can all be satisfied, by requiring yG to receive the truth value that the subformula G has. In

particular, the following definitions were given.

• If G is the Boolean variable xi then

SG = {(yG ∨ ¬xi), (¬yG ∨ xi)}. (1)

2

• If G is ¬G′ for another subformula G′ then

SG = {(yG ∨ yG′), (¬yG ∨ ¬yG′)} ∪ SG′ . (2)

• If G = (G1 ∧ G2 ∧ . . . ∧ Gk) for k ≥ 1, then

SG = {(yG ∨ ¬yG1
∨ ¬yG2

∨ · · · ∨ ¬yGk
)}

∪ {(¬yG ∨ yGi
) | 1 ≤ i ≤ k} ∪

⋃

1≤i≤k

SGi
. (3)

• If G = (G1 ∨ G2 ∨ · · · ∨ Gk) for k ≥ 2, then1

SG = {(¬yG ∨ yG1
∨ yG2

∨ · · · ∨ yGk
)} ∪ {(yG ∨ ¬yGi

) | 1 ≤ i ≤ k} ∪
⋃

1≤i≤k

SGi
. (4)

For each set S of clauses defined over Boolean variables in W , let us extend the function ψ
again (so that it is now defined for sets of Boolean formulas) by setting

ϕ(S) = {ψ(Ĉ) | Ĉ ∈ S}

so that ψ(S) includes the corresponding clauses defined over variables in V , as defined above.

One can see by the above definitions that if H is a subformula of G then SH ⊆ SG , and

ψ(SH) ⊆ ψ(SG).

When given a string ω ∈ Σ⋆
F encoding a Boolean formula F as input, the algorithm to be

described will — effectively2 — maintain

• a Boolean formula Ĝ, defined on the set of Boolean variables in W , and

• a set S of clauses, each defined over the variables in W , and

• a positive integer h

such that the following property is maintained:

Invariant:

(a) The formula F , encoded by ω, is satisfiable if and only if the formula

Ĝ ∧
∧

C∈S

C (5)

is satisfiable.

(b) If g is the smallest positive integer such that yGg does not appear in Ĝ or in any of the

clauses in S, then ψ(yGg) = xh.
1One could also apply this rule when k = 1: The definition of SG would be the same as when the rule above it

(as shown at line (3)) is applied in this case.
2Since this is working with encodings, when implemented using a Turing machine, the algorithm will maintain

the corresponding Boolean function ψ(Ĝ) and set of clauses ψ(S) instead.

3

On input ω ∈ Σ⋆
F . . .

1. if (ω ∈ LF) {

2. Set G̃ to be the Boolean formula F encoded by ω

3. S̃ := ∅

4. Set k be the largest integer such that the variable xk appears in F

5. h := k + 1

6. while (a variable xi is a subformula of G̃, for an integer i such that 0 ≤ i ≤ k) {

7. Let i be an integer such that 0 ≤ i ≤ k and xi is a subformula of G̃

8. Replace the the first occurrence of xi in G̃ with xh

9. S̃ := S̃ ∪ {(xh ∨ ¬xi), (¬xh ∨ xi)}

10. h := h+ 1

}

Figure 1: Polynomial-Time Many One Reduction — Beginning of Algorithm

1.3 Algorithm — and its Correctness

Consider an execution of the algorithm that begins in Figure 1 above, continues in Figure 2

on page 6, and ends in Figure 3 on page 7, on an input string ω ∈ Σ⋆
F . Since the steps at

lines 1 and 18 are executed if ω /∈ LF, the string f(ω) = λ is returned in this case — so that

f(ω) /∈ LCNF-SAT, as required. It remains only to consider the case that ω ∈ LF — in which

case the steps at lines 1–17 are executed instead. As above, let F be the Boolean formula

encoded by ω in this case.

Since G̃ and S̃ are initialized to have values F = ψ(F) and ∅, respectively, at lines 2 and 3,

the Boolean formula at line (5), above, is equal to F at this point — and it is certainly satisfiable

if and only F is. The variable h is defined to have value k + 1, for k as described above, so

that ψ(yG1
) = xh. Since no variables yGg appear in Ĝ or in any clause in the set S at this point,

this establishes the invariant given above (where, again, each Boolean formula G is being

replaced, on the fly, by ψ(G)).

Consider the loop at lines 6–10. One can see by an examination of these lines of the algorithm

that each variable in V (which would be a variable xi such that 0 ≤ i ≤ k) is labelled as a

subclause Gg, so that this is replaced by a corresponding variable ψ(yGg) — a variable xk+g,

for a positive integer g — with clauses added to S̃ = ψ(S) according to the rule at line (1),

above.

4

Suppose, for example, that ω encodes the following Boolean formula F :

((¬(x1 ∨ ¬x4) ∧ x5) ∨ x2).

Then G̃ would be initialized to be this formula at line 2, S̃ would be initialized to be the empty

set at line 3, k would be set to be 5 at line 4, and h would be initialized with value 5 at line 6. If

variables are detected and replaced in order from left to right in F , then x1 would be replaced

with ψ(yG1
) = x6, x4 would be replaced with ψ(yG2

) = x7, x5 would be replaced with ψ(yG3
) =

x8, and x2 would be replaced with ψ(yG4
) = x8. Clauses would be added to the set S̃ each

time the step at line 9 is executed and h would be incremented at each execution of the step

at line 10. The test at line 4 would fail the fifth time it is checked, at which point

• G̃ is the formula

((¬(x6 ∨ ¬x7) ∧ x8) ∨ x9),

• S̃ is the set of clauses

{(x6 ∨ ¬x1), (¬x6 ∨ x1), (x7 ∨ ¬x4), (¬x7 ∨ x4),

(x8 ∨ ¬x5), (¬x8 ∨ x5), (x9 ∨ ¬x2), (¬x9 ∨ x2)}

• and h = 10.

The above invariant is satisfied, for this example —- and it can be proved that it holds in

general, after each execution of the body of the loop at lines 6–10, by induction on the number

of times that the loop body has been executed so far — considering the clauses added to S̃
during the execution of the step at line 9. Since the number of Boolean variables appearing

in F is finite — indeed, it is bounded by the length |ω| of the string encoding this formula —

the execution of this loop eventually ends, and the execution of the algorithm continues with

the step at line 11. At each execution of the body of the loop at lines 11–16, a subformula of G̃
with one of the forms

• ¬v, for a variable v,

• (xg1 ∧xg2 ∧ · · ·∧xgm) for a positive integers m and non-negative integers g1, g2, . . . , gm,

or

• (xg1 ∨ xg2 ∨ · · · ∨ xgm) for an integer m ≥ 2 and non-negative integers g1, g2, . . . , gm.

is processed. In each case the subformula is replaced in G̃ with the (currently unused) vari-

able xh, h is incremented, and clauses are added to S̃, following the rules at lines (2)–(4), in

order to ensure that a truth assignment can only be extended, to satisfy all of the clauses in

the set, by setting the truth value of the new variable to be the truth value of the subformula it

replaces in G̃.

5

11. while (G̃ is not a variable) {

12. if (G̃ has a subformula ¬v for some variable v) {

13. Let ¬xi be subformula of G̃ for some positive integer i. Replace the

subformula ¬xi with the variable in xh in G̃, adding the clauses

(xh ∨ xi), (¬xh ∨ ¬xi)

to the set S̃, and adding one to the value of h.

14. } else if (G̃ has a subformula (xg1 ∧ xg2 ∧ · · · ∧ xgm) for a positive

integer m and integers g1, g2, . . . gm) {

15. Let (xg1 ∧xg2 ∧ · · ·∧xgm) be a subformula of G̃, as above. Replace this

subformula with the variable xh in G̃, adding to S̃ the clause

(xh ∨ ¬xg1 ∨ ¬xg2 ∨ · · · ∨ ¬xgm)

and each of the clauses

(¬xh ∨ xgi)

such that 1 ≤ i ≤ m. Increase the value of h by one.

} else {

16. Let (xg1 ∨ xg2 ∨ · · · ∨ xgm) be a subformula of G̃ for an integer m ≥ 2
and positive integers i1, i2, . . . , im. Replace this subformula with xh
in G̃, adding to S̃ the clause

(¬xh ∨ xg1 ∨ xg2 ∨ · · · ∨ xgm)

and each of the clauses

(xh ∨ ¬xgi)

such that 1 ≤ i ≤ m. Increase the value of h by one.

}

}

Figure 2: Polynomial-Time Many-One Reduction — Continuation of Algorithm

Consider the ongoing example. Immediately before the execution of the loop at lines 11–16, G̃
is the formula

((¬(x6 ∨ ¬x7) ∧ x8) ∨ x9)

and h = 10. During the first execution of the body of the loop, the subformula ¬x7 is replaced

6

17. Return the encoding of the Boolean formula

(G̃) ∧
∧

C∈S̃

C

as output.

} else {

18. Return the empty string, λ, as output.

}

Figure 3: Polynomial-Time Many-One Reduction — Conclusion of Algorithm

by the variable x10 to obtain the formula

((¬(x6 ∨ x10) ∧ x8) ∨ x9)

with the value of h increased to 11, and with new clauses added so that S̃ is the set

{(x6 ∨ ¬x1), (¬x6 ∨ x1), (x7 ∨ ¬x4), (¬x7 ∨ x4), (x8 ∨ ¬x5), (¬x8 ∨ x5),

(x9 ∨ ¬x2), (¬x9 ∨ x2), (x10 ∨ x7), (¬x10 ∨ ¬x7)}.

During the second execution of the body of the loop, the subformula (x6 ∨ x10) is replaced by

the variable x11 to obtain the formula

((¬x11 ∧ x8) ∨ x9)

with the value of h increased to 12, and with new clauses added so that S̃ is the set

{(x6 ∨ ¬x1), (¬x6 ∨ x1), (x7 ∨ ¬x4), (¬x7 ∨ x4), (x8 ∨ ¬x5), (¬x8 ∨ x5),

(x9 ∨ ¬x2), (¬x9 ∨ x2), (x10 ∨ x7), (¬x10 ∨ ¬x7), (¬x11 ∨ x6 ∨ x10),

(x11 ∨ ¬x6), (x11 ∨ ¬x10)}.

During the third execution of the body of the loop, the subformula ¬x11 is replaced by the

variable x12 to obtain the formula

((x12 ∧ x8) ∨ x9)

with the value of h increased to 13, and with new clauses added so that S̃ is the set

{(x6 ∨ ¬x1), (¬x6 ∨ x1), (x7 ∨ ¬x4), (¬x7 ∨ x4), (x8 ∨ ¬x5), (¬x8 ∨ x5),

(x9 ∨ ¬x2), (¬x9 ∨ x2), (x10 ∨ x7), (¬x10 ∨ ¬x7), (¬x11 ∨ x6 ∨ x10),

(x11 ∨ ¬x6), (x11 ∨ ¬x10)}.

7

During the fourth execution of the body of the loop, the subformula (x12 ∧ x8) is replaced by

the formula x13 to obtain the formula

(x13 ∨ x9)

with the value of h increased to 14, and with new clauses added so that S̃ is the set

{(x6 ∨ ¬x1), (¬x6 ∨ x1), (x7 ∨ ¬x4), (¬x7 ∨ x4), (x8 ∨ ¬x5), (¬x8 ∨ x5),

(x9 ∨ ¬x2), (¬x9 ∨ x2), (x10 ∨ x7), (¬x10 ∨ ¬x7), (¬x11 ∨ x6 ∨ x10),

(x11 ∨ ¬x6), (x11 ∨ ¬x10), (x13 ∨ ¬x12 ∨ ¬x8), (¬x13 ∨ x12), (¬x13 ∨ x8)}.

During the fifth (and final) execution of the body of the loop, the subformula (x13 ∨ x9) is

replaced by the formula x14 to obtain the formula

x14

with the value of h increased to 15, and with new clauses added so that S̃ is the set

{(x6 ∨ ¬x1), (¬x6 ∨ x1), (x7 ∨ ¬x4), (¬x7 ∨ x4), (x8 ∨ ¬x5), (¬x8 ∨ x5),

(x9 ∨ ¬x2), (¬x9 ∨ x2), (x10 ∨ x7), (¬x10 ∨ ¬x7), (¬x11 ∨ x6 ∨ x10),

(x11 ∨ ¬x6), (x11 ∨ ¬x10), (x13 ∨ ¬x12 ∨ ¬x8), (¬x13 ∨ x12), (¬x13 ∨ x8)

(¬x14 ∨ x13 ∨ x9), (x14 ∨ ¬x13), (x14 ∨ ¬x9)}.

At this point the loop test fails, the step at line 17 is executed, and an encoding of the formula

((x14) ∧ (x6 ∨ ¬x1) ∧ (¬x6 ∨ x1) ∧ (x7 ∨ ¬x4) ∧ (¬x7 ∨ x4), (x8 ∨ ¬x5) ∧ (¬x8 ∨ x5)

∧ (x9 ∨ ¬x2) ∧ (¬x9 ∨ x2) ∧ (x10 ∨ x7) ∧ (¬x10 ∨ ¬x7) ∧ (¬x11 ∨ x6 ∨ x10)

∧ (x11 ∨ ¬x6) ∧ (x11 ∨ ¬x10) ∧ (x13 ∨ ¬x12 ∨ ¬x8),∧(¬x13 ∨ x12) ∧ (¬x13 ∨ x8)

∧ (¬x14 ∨ x13 ∨ x9) ∧ (x14 ∨ ¬x13) ∧ (x14 ∨ ¬x9))

is returned as output.

In the general case one can prove, by induction on the number of executions of the loop body,

that the Invariant is satisfied at the beginning of each execution of the body of this loop. Thus

it is satisfied when the step at line 17 is reached and executed, so that the string returned as

output is the encoding f(ω) of a Boolean formula in conjunctive normal form that is satisfiable

if and only if F is satisfiable, as required.

Indeed, this algorithm computes the function f : Σ⋆
F → Σ⋆

F described in the lecture notes,

so it remains only to show that the number of steps used by a multi-tape Turing machine,

implementing this algorithm, is at most polynomial in the length of the input string ω.

8

1.4 Completeness of the Analysis

Consider a multi-tape Turing machine with five or more tapes with tapes as follows. During the

first step of the execution of the Turing machine, the leftmost cell of each tape can be marked

in order to make it easy to find when needed.

• The first tape is the input tape. This can be used to store a copy of the encoding of the

Boolean formula G̃.

• The second tape can be used to maintain encodings of the clauses in the set S̃. Main-

tenance and use of this tape is simplified if no symbols are used to separate these

encodings — brackets can be matched, instead, to see when one encoding ends and

the next begins.

• A third tape can be used to maintain a decimal encoding of of the integer h.

• A small number of additional work tapes can be used to carry out various operations.

• A final tape will be used as the output tape.

Each of the major stages of the algorithm can now be implemented as follows.

• Since LF ∈ P the test at line 1 can certainly be carried out using a number of steps that

is polynomial in the length of the input string.

If the output tape has not been modified during this3, then it suffices to end the execution

immediately after this, if ω /∈ LF — because the step at line 18 should be reached and

executed and the empty string returned. It therefore suffices to consider the case that

ω ∈ LF, so that ω encodes a Boolean formula F .

• Assuming again that the input string was not changed, apart from marking the leftmost

cell, during the above step, the steps at lines 2 and 3 can be carried out simply by

ensuring that the tape heads for the second and third tapes rest at the leftmost cells of

the tapes. The cost for this is dominated by the cost to check whether ω ∈ LF.

A decimal representation of k can be obtained by initializing the third tape to store the

decimal representation of 0 and then sweeping over the input, comparing the index of

each Boolean variable found as a subformula in F to the integer whose decimal rep-

resentation is on this tape, and replacing this integer whenever a larger one is found.

The total number of steps used can be shown to be linear in |ω|. Once this has been

done, the integer can be incremented, to obtain a decimal representation of k = h + 1
(executing the step at line 5) using O(|ω|) additional steps. The length of the decimal

representation of k is at most |ω|+ 1.

3This can be arranged by coping the input onto another tape and having that other tape used, for the first step,

instead of the input tape.

9

• If a work tape is used to store the encoding of a formula that is being constructed, and

this is copied back to the first tape at the end, then the execution of the loop at lines 6–10
can be carried out by making a single sweep from the left to right over the the encoding

of F , replacing variables and adding clauses to the set S̃ as one goes. Each encoding

of a variable, that is a substring of ω, is replaced by encoding of a new variable whose

encoding certainly has length at most 2|ω|, so it can be argued that the length of the

encoding of the formula G̃, resulting from this process, is at most 2|ω|2. Similarly, a

consideration of the pair of clauses added to S̃, each time a variable is replaced„ have

encodings whose total length is at most the sum of 2|ω|, twice the length of the encoding

of the variable to be replaced, and a small constant. It can therefore be argued that,

when |ω| is sufficiently large, the length of the non-blank string on the second tape is at

most 3|ω|2 when the execution of this loop ends.

• Each subformula of F must begin with a different symbol in F , and this can be used to

argue that there are at most |ω| executions of the body of the loop at lines 11–16. The

length of the encoding of G̃ is either unchanged or reduced every time the body of this

loop is executed, and clauses whose encodings have total length at linear in the length

of the replaced subformula — thus, in O(|ω|2) — are added to S̃ at each execution of

the body of this loop.

This can be used to argue that the execution of the loop can be carried out using O(|ω|3)
moves of the Turing machine and that the length of the non-blank string on the second

tape is in O(|ω|3) when the execution of this loop ends.

• The generation of the output at line 17 is easily carried out using a sweep over the non-

blank string on the second tape, writing output symbols (including leading and ending

brackets, and logical operator as needed), followed by a sweep of the output tape head

back to the left. The number of moves used for this is certainly in O(|ω|3) too.

Thus the number of moves used by the Turing machine is in O(|ω|3) — completing a proof that

LFSAT �P, M LCNF-SAT.

2 Completing a Proof that LCNF-SAT �P, M L3CNF-SAT

Consider the polynomial-time many-one reduction from LCNF-SAT to L3CNF-SAT described in the

lecture notes. Like the reduction from LFSAT to LCNF-SAT considered above, this involves a

transformation from a Boolean formula F to a Boolean formula F̂ in simpler form — such that

F̂ depends on Boolean variables which F does not, but that such that F̂ is satisfiable if and

only if F is.

As described in the lecture notes, each clause of F is translated into a set of one or more

clauses:

10

• A clause (ℓ1) of F including a single literal is used to produce a set {(ℓ1∨ℓ1∨ℓ1) including

a single clause, namely, the “or” of three copies of the literal in the clause from F .

• A clause (ℓ1 ∨ ℓ2) of F including two literals is used to produce a set {(ℓ1 ∨ ℓ2∨ ℓ2)} that

also includes a single clause, namely one with three literals, including two copies of the

second literal in the clause from F .

• A clause (ℓ1 ∨ ℓ2 ∨ ℓ3) of F including three literals is used to produce a set of size one,

containing this clause.

• For k ≥ 4 a clause (ℓ1∨ℓ2∨· · ·∨ℓk) including k literals is used to produce a set including

k− 2 clauses, including k− 2 new variables that are not used anywhere else. Additional

details are in the lecture notes.

An algorithm computing a function f : Σ⋆
F → Σ⋆

F , making use of this idea, can be obtained by

adapting — and considerably simplifying — the algorithm shown in Figures 1–3 on pages 4–7.

• The test at line 1, checking whether the input string ω belongs to LF , should be replaced

with a test whether this string belongs to LCNF. Since LCNF ∈ P, as described in the

lecture notes, this test can be implemented by a deterministic Turing machine, using a

number of steps that is polynomial in the length of the input string.

• Neither an extra copy of a Boolean formula G̃ nor a set S̃ will be needed, so that the

steps at lines 2 and 3 are not needed (and these can be removed). Instead, the algorithm

continues (if the test at line 1 passed) with the steps at lines 4 and 5.

• Both of the loops at lines 6–10 and 11–16 can be replaced by a simple process in which

the machine sweeps from left to right over the input string, processing each clause that

is seen and processing it using the rules given above — writing the “and” of clauses

for the corresponding set (as given above) onto the output tape — renaming the new

variables on the fly, so the the variables used are xk+1, xk+2, xk+3, and so on. The

decimal representation of h will be incremented as new variables are used, as in the

original algorithm.

A Turing machine computed the function, that uses time in O(|ω|2) is easily described, as

needed to establish that LCNF-SAT �P, M L3CNF-SAT.

11

A Bit of History

Richard Manning Karp is an American computer scientist and a Professor Emeritus at the

University of California, Berkeley. In his paper “Reducibility Among Combinatorial Problems” [4],

Professor Karp noted that the problem, proved by Stephen Cook to be complete for NP
with respect to polynomial-time oracle reductions [1], was complete for NP with respect to

polynomial-time many-one reductions as well. Professor Karp also proved numerous other

problems to be “NP-complete,” in this sense, in that paper. Consequently, polynomial-time

many-one reductions are often called Karp reductions in his honour.

Professor Karp won the Turing award in 1985, in recognition of this, and various other contri-

butions.

Sources of Additional Information

Chapter 34 of the third edition of Introduction to Algorithms [2] includes an introduction to

several other “classical” NP-complete problems and sketches of proofs that they are NP-

complete.

Computers and Intractability: A Guide to the Theory of NP-Completeness [3] is an excellent

older reference that includes information about how one can prove that a language is NP-

complete, as well as many more NP-complete problems.

References

[1] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings 3rd

Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

12

[2] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-

tion to Algorithms. MIT Press, third edition, 2019.

[3] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[4] Richard M. Karp. Reducibility among combinarorial problems. The Journal of Symbolic

Logic, 40:618–619, 1975.

13

