Lecture #13: What If...? More about Nondeterministic Computation

Exercises and Review

Additional Exercises

1. Recall that

$$\mathcal{QP} = \bigcup_{k \ge 1} \mathsf{TIME}\left(2^{(n^k)}\right).$$

Now suppose that

$$\mathcal{NQP} = \bigcup_{k \ge 1} \mathsf{NTIME}\left(2^{(n^k)}\right).$$

Prove that if $\mathcal{P} = \mathcal{NP}$ then $\mathcal{QP} = \mathcal{NQP}$.

2. Let $L \subseteq \Sigma^*$ such that $L \in \mathcal{P}$. Prove that $\mathcal{P}^L = \mathcal{P}$ and $\mathcal{NP}^L = \mathcal{NP}$.

Questions for Review

- 1. What is an *NP*-*intermediate* language? Under what circumstances can it be proved that *NP*-intermediate languages exists?
- 2. Name (and describe) a language, corresponding to a decision problem, that is *believed*, by many researchers, to be \mathcal{NP} -intermediate.
- 3. Consider the complexity classed *EXPTIME* and *NEXPTIME*.
 - (a) Give the definition of each of these complexity classes.
 - (b) What is known about the relationship between *EXPTIME* and *NEXPTIME*? What is suspected about this, but unproved?
 - (c) Suppose that $\mathcal{P} = \mathcal{NP}$. What does this imply about the relationship between *EXPTIME* and *NEXPTIME*?

- 4. Let $L \subseteq \Sigma^*$ for an alphabet Σ .
 - (a) Define each of the complexity classes \mathcal{P}^L and \mathcal{NP}^L .
 - (b) What is known about the relationship between \mathcal{P}^L and \mathcal{NP}^L , for various language $L \subseteq \Sigma^*$ (for alphabets Σ)?
 - (c) What, if anything, can be concluded from this, concerning proofs that $\mathcal{P} = \mathcal{NP}$ (if this is, in fact, true)?
 - (d) What, if anything, can be concluded from this, concerning proofs that $\mathcal{P} \neq \mathcal{NP}$ (if this is, in fact, true instead)?