
Lecture #13: What If...? More about

Nondeterministic Computation

If P 6= NP Then NP-Intermediate Languages Exist

Recall that a language L ⊆ Σ⋆ is NP-Intermediate if it satisfies the following properties.

(a) L ∈ NP .

(b) L /∈ P.

(c) L is not NP-complete.

If P = NP then no NP-intermediate languages can exist, because the above properties (a)

and (b) would be contradictory. On the other hand, it has been shown by Ladner [2] that the

assumption that P 6= NP is sufficient to prove that these languages exist.

Unfortunately, the only languages that have been proved to be NP-intermediate, assuming

P 6= NP , are highly artificial (and complicated). A proof of the following claim can also be

found in Section 3.3 of the text of Arora and Barak [1].

Claim 1. If P 6= NP then an NP-Intermediate language exists.

The proof of this claim is for interest only — CPSC 511 do not need to read this document in

order to be successful in this course.

Recall the alphabet ΣF and language LF ⊆ Σ⋆
F introduced in Lecture #11 (on the Cook-Levin

Theorem): LF is the language of encodings of Boolean formulas and, as explained in that

lecture, LF ∈ P. Recall, as well, that LFSAT ⊆ Σ⋆
F is the language of encodings of satisfiable

Boolean formulas. As shown in Lecture #11, LFSAT is NP-complete.

Let

ΣF,# = ΣF ∪ {#}.
Since |ΣF | = 16 (as can be confirmed by consulting the notes for Lecture #11), |ΣF,#| = 17.

For each total function f : N → N, let

LFSAT,f = {ω#(|ω|f(|ω|)) | ω ∈ LFSAT} ⊆ Σ⋆
F,#.

1

1To simplify the presentation, let us define 0
0 to be 0 here, and in the rest of this document.

1

Thus a string µ ∈ ΣF,# is in LFSAT,f if and only if µ begins with a string ω ∈ LF that encodes a

satisfiable Boolean formula, and that continues and ends with nf(n) copies of #, where n = |ω|.
Recall, as well, that the encodings of Turing machines described in Lecture #4 can be used to

define an enumeration

M0,M1,M2, . . .

of all deterministic multi-tape Turing machines, such that every such Turing machine appears

infinitely often in this listing.

The claim will be established by considering a recursively defined total function H : N → N

that is defined as follows.

(a) H(0) = H(1) = H(2) = 0.

(b) For every integer n such that n ≥ 3 consider the following set of properties of a non-

negative integer i:

i. i < log2 log2 n.

ii. Mi = (Q,Σ,Γ, δ, q0, qaccept, qreject) such that |Σ| = 17 — so that the language of Mi

can be considered to be a subset of Σ⋆
F,#.

iii. For every string ω ∈ Σ⋆
F,# with length at most log2 n such that ω ∈ LFSAT,H , Mi

accepts ω after taking at most i · |ω|i steps.

iv. For every string ω ∈ Σ⋆
F,# with length at most log2 n such that ω /∈ LFSAT,H , Mi

rejects ω after taking at most i · |ω|i steps.

If there exists a non-negative integer i satisfying properties (i)–(iv), above, then H(n) is

the smallest non-negative integer satisfying these properties. H(n) = ⌊log2 log2 n⌋ if no

non-negative integer that satisfies these properties exists.

This definition of H is certainly confusing — notice that the definition of the language LFSAT,H

depends on the function H , but the above definition of the function H also depends on the

language LFSAT,H ! Notice, though, that for n ≥ 3 the definition of H(n) only depends on the

values of H(k) for integers k such that k ≤ log2 n. It turns out not only that H is a well-defined

function but that the following is true as well.

Lemma 2. Let Σ0 = {1}. Then the function fH : Σ⋆
F → Σ⋆

0 such that

f(ω) = 1H(|ω|),

mapping every string ω ∈ Σ⋆
F to the unary representation of H(|ω|), is computable determin-

istically in polynomial time.

2

Note: The proof of Lemma 2 is long and complicated — and the proof of the main claim can

be completed without understanding how this lemma is proved. The proof of this lemma —

which is found in Appendix A — can be skipped or left until a later reading of this document.

Lemma 3. LFSAT,H ∈ NP .

Proof. Consider a verification algorithm that uses a new symbol, “♠”, as the separator between

encodings of instances of the language it should verify and encodings of certificates. The

algorithm should begin by checking whether its input begins, either with a string “ ω#” or with

a string “ω♠”, where ω ∈ Σ⋆
F — rejecting if is this is not the case. Note that, if the input string

does have one of these forms then at most |ω|+ 1 are needed to confirm this.

The algorithm should next check whether ω ∈ LF, rejecting if this is not the case. Since

LF ∈ P, as discussed in Lecture #11, this step can also be carried out, deterministically, using

a number of steps that is at most polynomial in |ω|.
The algorithm should then use ω to compute the string ω#H(|ω|); it follows by Lemma 2 that

this step can also be carried out, deterministically, using a number of steps that is at most

polynomial in |ω|. The input should be rejected if it does not begin with ω#H(|ω|)♠ — rejecting

if this is not also true. Since the length of ω#H(|ω|) is at most polynomial in |ω|, this step can

also be carried out using time at most polynomial in the length of ω.

The algorithm should then, effectively, ignore the copies of “#” in the input string and proceed

as a verification algorithm for LFSAT would in order to verify ω. That is, it should continue

by confirming that the input ends with the encoding of a satisfying truth assignment for the

Boolean formula encoded by ω — accepting if this is the case, and rejecting otherwise. Since

the verification algorithm for LFSAT would use a number of steps at most polynomial in the

length of ω, it follows that the rest of the verification algorithm for LFSAT,H use at most this

number of steps too — as needed to conclude that LFSAT,H ∈ NP .

Lemma 4. If LFSAT,H ∈ P then there exists a constant c such that H(n) ≤ c for all n ∈ N.

Proof. Suppose that LFSAT,H ∈ P. Then there exists a deterministic Turing machine M that

decides this language, using at most d · nd steps when executed on any string with positive

length n, for some positive integer constant d.

Since M has infinitely many encodings there is a number h such that h > d and M = Mh.

The constant c in the claim can now be chosen as

max

(
h, max

0≤i≤22h
(H(i))

)
.

Then it follows that if n > 22
h
, so that h < log2 log2 n, h satisfies all the properties in part (b)

of the recursive definition of H , so that H(n) ≤ h ≤ c. On the other hand, it is clear from the

3

above definition of c that H(n) ≤ c if 0 ≤ n ≤ 22
h

as well. Thus the constant c satisfies the

condition given in the claim.

Lemma 5. If P 6= NP then LFSAT,H /∈ P.

Proof. By contradiction. Suppose that P 6= NP but LFSAT,H ∈ P.

Consider a function fΣ⋆
F
→ Σ⋆

F,# such that, for all ω ∈ Σ⋆
F ,

f(ω) =

{
ω#|ω|H(|ω|)

if ω ∈ LF,

λ if ω /∈ LF.

Note that ω ∈ LFSAT if and only if f(ω) ∈ LFSAT,H .

However LF ∈ P, and it follows by Lemma 2 that a unary representation of H(|ω|) is com-

putable deterministically, from ω, in polynomial time. Furthermore, it follows by Lemma 4 that

H(|ω|) ≤ c for some constant c — so that the number of copies of “#” to be appended to ω, in

order to compute f(ω) when ω ∈ LF, is also polynomial in the length of ω Thus the function f
is, therefore, computable deterministically in polynomial time — and this a polynomial-time

many-one reduction from LFSAT to LFSAT,H :

LFSAT �P, M LFSAT,H .

Since LFSAT,H ∈ P (by assumption) it now follows that LFSAT ∈ P too. Since LFSAT is NP-

hard it now follows that P = NP contradicting the assumption that P 6= NP . The claim now

follows.

Lemma 6. If P /∈ NP then

lim
n→+∞

H(n) = +∞.

Proof. Suppose that P 6= NP . Then Lemma 5 implies that LFSAT,H /∈ P. Furthermore, it

follows by the argument used to establish this lemma that either the above limit must not exist,

at all, or it must by +∞.

Now, if this claim is false (so that the limit is not +∞) then there must exist a constant c such

that H(n) = c for infinitely many non-negative integers n.

However, the definition of H now implies that the deterministic Turing machine Mc correctly

decides whether ω ∈ LFSAT,H for every string ω with any positive length n: If the machine

failed to do this for a string with positive length d then it would not be possible that H(n) = c

for n > 22
d
.

Modifying Mc (if needed) to ensure that the machine correctly decides membership of λ in

the language, a deterministic Turing machine that decides LFSAT,H in polynomial time is now

4

On input ω ∈ Σ⋆
F

1. If |ω| ≤ N then use the finite control to remember whether ω ∈ LFSAT. Accept if

ω ∈ LFSAT and reject , otherwise.

2. Compute f(ω) ∈ Σ⋆
F,#.

3. If f(ω) does not have the form µ#m for a string µ ∈ LF, and a natural number m,

then reject .

4. If m 6= kH(k) where k = |µ|, for m and µ as above, then reject .

5. Apply this algorithm to recursively decide whether µ ∈ LFSAT. Accept if µ ∈ LFSAT

and reject otherwise.

Figure 1: Algorithm Used to Obtain a Contradiction

obtained. It follows that LFSAT,H ∈ P, giving us a contradiction, as needed to establish the

claim.

Lemma 7. If P 6= NP then LFSAT,H is not NP-complete.

Proof. Suppose, to obtain a contradiction, that P 6= NP and that LFSAT,H is NP-complete.

Then LFSAT �P, M LFSAT,H , since LFSAT ∈ NP, so there exists a function f : Σ⋆
F → Σ⋆

F,# such

that

• ω ∈ LFSAT if and only if f(ω) ∈ LFSAT,H for every string ω ∈ Σ⋆
F , and

• there is a deterministic Turing machine computing f in polynomial time. In particular,

there exists a constant c such that the number of steps used by this machine, given an

input with positive length n, is at most c · nc.

Since P 6= NP, it follows by Lemma 6 that there are only finitely many numbers n ∈ N such

that H(n) ≤ 2c — so that there is a natural number N such that H(n) ≥ 2c whenever n ∈ N

and n ≥ N . We may assume N ≥ 9, so that 2
√
N < N .

A deterministic Turing machine can use a (greatly expanded) finite control to remember whether

ω ∈ LFSAT for every string ω ∈ Σ⋆
F such that |ω| < N — so that it will correctly report whether

ω ∈ LFSAT on input ω, for every such input string.

Now consider the algorithm shown in Figure 1, above. If this recursive algorithm — which de-

cides membership of its input in LFSAT — rejects ω at any of lines 1, 3 or 4, then its output is

correct. This is also true if it accepts ω at line 1. Otherwise step 5 is reached and either

(a) |µ| < N , so that the finite control will be used to decide whether µ ∈ LFSAT, and this

execution of the algorithm will terminate with the correct output provided, or

5

(b) |µ| ≥ N . In this case |µ| ≤ 2
√

|ω| < |ω| — for if |µ| ≥ N and |µ| > 2
√

|ω| then

|f(ω)| > |µ|H(|µ|) ≥ c · nc for n = |ω|, contradicting the fact that f can be computed using

an efficient deterministic Turing machine, as described above.

It is now easily proved, by induction on the length of the input string, that this algorithm correctly

decides membership in LFSAT.

It is also easily proved (using the above bounds on the length of µ if the last step is reached)

that the number of steps used by this recursive algorithm is at most polynomial in the length of

the input string in the worst case. This implies that LFSAT ∈ P.

Since LFSAT is NP-hard, it follows that P = NP — giving us the contradiction needed to

establish the claim.

Proof of Claim 1. Claim 1 now follows by Lemmas 3, 5, and 7.

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, 2009.

[2] Richard E. Ladner. On the structure of polynomial time reducibility. Journal of the ACM,

22:155–171, 1975.

A Proof of Lemma 2

As its title indicates, this appendix includes a proof of Lemma 2 (as stated on page 2).

Consider algorithms that make use of the following global data.

• H is an integer array with length 1 + ⌊log2 n⌋, for n = |ω|. The entries of this array will

initially be undefined but, for every integer m such that 0 ≤ m ≤ ⌊log2 n⌋, H[m] will

eventually be set to be H(m).

• A partial function ϕ from the set of strings in Σ⋆
F,# to {T, F}. This partial function will

initially be undefined everywhere — and it will never be defined on more than a finite

set of input strings. Eventually, ϕ(µ) will be set to be T if µ ∈ LFSAT,H and to be F if

µ /∈ LFSAT,H , for every string µ ∈ Σ⋆
F,# such that |µ| ≤ log2 n.

These data structures can be encoded as strings (for computations by Turing machines) in a

variety of ways. For example, the array H could be encoded as a set of ordered pairs, each

6

consisting of the decimal representation of an integer m such that 0 ≤ m ≤ ⌊log2 n⌋ and

the decimal representation of H[m], once this value has been defined. Similarly, ϕ could be

encoded as a set of ordered pairs, each consisting of a string µ ∈ Σ⋆
F,# with length at most

⌊log2 n⌋, and the value ϕ(µ) ∈ {T, F}, when this value is defined.

A string encoding H, in this way, would certainly have length at most polynomial in n = |ω|.
Indeed, the encoding of an ordered pair storing the decimal representations of an integer m
and of H(m) would have length in O(log2 m), so that the length of the encoding of H would

have length in O(log2 n log2 log2 n). Furthermore, if a Turing machine with two-way infinite

tapes is used (or simulated) then, for each integer m such that 0 ≤ m ≤ ⌊log2 n⌋, the cost to

either use this encoding to obtain the value of H(m), or to modify the string to set the value

of H(m), can be shown to be in O(log2 m log2 log2 m).

Since the number of strings in Σ⋆
F,# with length at most ⌊log2 n⌋ is

⌊log2 n⌋∑

i=0

|ΣF,#|i =
⌊log2 n⌋∑

i=0

17i

=
17⌊log2 n⌋+1 − 1

17− 1

< 17
16 · 17log2 n

= 17
16 · nlog2 17,

it can be argued that the length of an encoding of the partial function ϕ will be at most polyno-

mial in n. Furthermore, if the above ordered pairs are sorted (in the encoding) by nondecreas-

ing order of the length of the string that is the first element of the ordered pair, then it can be

argued that the distance one must move to, from the beginning of the encoding, to determine

whether ϕ(µ) is defined is at most singly exponential in the length of µ — that is, in O(c|µ|) for

some positive constant c. Assuming the use of a multi-tape Turing machine (or a simulation

of one) it can be argued that the cost to change the encoding, to set the value of ϕ(µ), is in

O(c|µ|) for a positive constant c as well.

In any case it will be assumed that this or some other reasonable encoding of both H and ϕ is

used, so that the operations

• checking whether H[m] is defined for an integer i such that 0 ≤ m ≤ ⌊log2 n⌋, returning

this value if it is;

• setting the value of H[m] to be a given value, if this is not defined already,

• checking whether ϕ is defined at a given string µ ∈ Σ⋆
F,# with length at most log2 n, and

returning the value of ϕ at this string if it is defined,

• setting the value of ϕ at a given string µ ∈ Σ⋆
F,# with length at most log2 n to be a given

value if this is not already defined

7

integer setH (integer m) {

1. if (H[m] is defined) {

2. return H[m]

3. } else if (m ≤ 2) {

4. H[m] := 0

5. return 0

} else {

6. int i := 0

7. while (i < ⌊log2 log2 m⌋) {
8. if (i encodes a Turing machine Mi whose input alphabet Σ

has size 17 — so Σ = ΣF,#) {

9. boolean passed := true

10. for each (string µ ∈ Σ⋆
F,# such that |µ| ≤ ⌊log2 m⌋) {

11. int t := i · |µ|i
12. if (setϕ(µ)) {

13. Simulate the first t steps of the execution of Mi on input µ. Set

passed to be false if this machine either fails to halt after this num-

ber of steps, or rejects µ after at most this number of steps have

been used.

} else {

14. Simulate the first t steps of the execution of Mi on input µ. Set

passed to be false if this machine either fails to halt after this num-

ber of steps, or accepts µ after at most this number of steps have

been used.

}

}

Figure 2: Algorithm to Evaluate H on Small Integers

can each be carried out using times that are as described for these functions, above.

Now consider the functions shown in Figures 2–4 on pages 8–10.

It is sufficient to prove the following in order to establish that the function H is well-defined and

computable.

Lemma 8. Let m be an integer such that 0 ≤ m ≤ ⌊log2 n⌋.

(a) If the algorithm setH is executed with the integer m as input then this execution of the

8

15. if (passed) {

16. H[m] := i

17. return i

} else {

18. i := i+ 1

}

} else {

19. i := i+ 1

}

}

20. H[m] := ⌊log2 log2 m⌋
21. return ⌊log2 log2 m⌋

}

}

Figure 3: Algorithm to Evaluate H on Small Integers, Concluded

algorithm eventually ends. On termination of this execution of the algorithm H[m] has the

value H(m), and this value is returned as output.

(b) If the algorithm setϕ is executed with a string µ ∈ Σ⋆
F,# with length m as input, then this

execution of the algorithm eventually ends. On termination of this execution of the algorithm

ϕ(µ) is equal to true if µ ∈ LFSAT,H and is equal to false otherwise. Furthermore, this

value ϕ(µ) has been returned as output.

Proof of Lemma 8. The result can be proved by induction on m, using the strong form of math-

ematical induction and considering the cases 0 ≤ m ≤ 2 in the basis.

Basis: One can see by inspection of the code that, for an integer m such that 0 ≤ m ≤
⌊log2 n⌋, the array entry H[m] is only set when the algorithm setH is executed with the same

integer m as input, and that, for a string µ ∈ Σ⋆
F,# with length m, the value of ϕ(µ) is only

defined when the algorithm setϕ is executed with the same string µ as input. It follows that

H[m] is undefined at the beginning of the first execution of the setH algorithm with input m
and that ϕ(µ) is undefined at the beginning of the first execution of the setϕ algorithm with

input µ as well.

Now if 0 ≤ m ≤ 2 and the algorithm setH is executed with input m then the test at line 1
fails, the test at line 3 passes, and steps 4 and 5 are executed so that H[m] is correctly set

to H(m) = 0 and this value is returned, as required. On all subsequent applications with

9

boolean setϕ (µ: Σ⋆
F,#) {

1. if (ϕ(µ) is defined) {

2. return ϕ(µ)

} else {

3. Set ν to be the longest prefix of µ that is in Σ⋆
F

4. if (ν ∈ LF) {

5. int h := setH[|ν|]
6. if

(
µ == ν#(|ν|

h)
)
{

The following test should be carried out by using exhaustive search —

checking partial truth assignments on the set of variables included in the

formula encoded by ν until either a satisfying truth assignment has been

found for ν or all such partial truth assignments have been checked.

7. if (ν ∈ LFSAT) {

8. Set ϕ(µ) to be true

} else {

9. Set ϕ(µ) to be false

}

} else {

10. Set ϕ(µ) to be false

}

} else {

11. Set ϕ(µ) to be false

}

12. return ϕ(µ)

}

}

Figure 4: Algorithm to Decide Membership in LFSAT,H on Short Strings

input m the test at line 1 is passed and H(m) = 0 is correctly returned, without H[m] being

changed, as desired.

Similarly, if the setϕ algorithm is executed with a string µ ∈ Σ⋆
F,# with length m, where 0 ≤

m ≤ 2, and this is the first execution of this algorithm, then ϕ(µ) is initially undefined and the

test at line 1 fails, so that the execution continues with the step at line 3. If ν is the longest prefix

of µ in Σ⋆
F then |µ| ≤ |µ| ≤ 2, so that h is set to be H(|ν|) = 0 at line 5. Now, if µ = ν#|ν|

h

10

then either |ν| = |µ| = 0 or |µ > 0 and |ν| = |µ| − 1 ≤ 1. Consequently either the test at line 6
fails or it is passes and the test at lne 7 fails. In either case ϕ(µ) is set to be false and this

value is returned, as required to satisfy the claim in this case. On subsequent applications of

the algorithm with input µ the test at line 1 is passed and ϕ(µ) is returned at line 2, as required.

For the inductive step one should first consider an execution of the setH algorithm with input m,

where 3 ≤ m ≤ ⌊log2 n⌋. Once again, if this is the first execution of the algorithm with this input

then the test at line 1 fails. This time the test at line 3 fails as well and the steps at lines 6–

21 are executed. Now, a comparison of these steps with the definition of the function H
suffices to confirm that if the call to setϕ returns the expected result (true if µ ∈ LFSAT,H

and false otherwise) then H[m] is correctly set to be H(m), when either the step at line 16
or the step at line 20. Now, since each string µ considered at line 12 has length between 0
and ⌊log2 m⌋ ≤ m − 1, it follows by the inductive hypothesis that these calls each return the

required value, as needed to establish the claim in this case.

Once again, when considering a later execution of this algorithm on the same input value m, it

suffices to note that the test at line 1 will pass and that the required value will be returned as

output, establishing the claim for this case as well.

A similar argument can be used to establish that if 3 ≤ m ≤ ⌊log2 n⌋ and the setϕ algorithm

is executed, with a string µ ∈ Σ⋆
F,# with length m as input, then the execution terminates

with ϕ(µ) set to be true if µ ∈ LFSAT,H and false otherwise, and with this value returned

as output: If this is the first execution of the algorithm with µ as input then the test at line 1
fails and the steps at lines 3–12 are executed. Comparing these steps to the definition of the

language LFSAT,H one can see that ϕ(µ) is correctly defined and the desired output is returned,

as long as the execution of setH[|ν|] at line 5 terminates, returning H(|ν|) as output. Now,

0 ≤ |ν| ≤ |µ| = m; this is, therefore, a consequence of the inductive hypothesis if |ν| < |µ|,
and it follows by the proof of part (a) (in the inductive step), above, if |ν| = |µ|. This establishes

the desired result for this case.

It remains only to consider later executions of the setϕ algorithm on the same input string µ.

Once again, this is easily established by noting that the test at line 1 is passed and the required

output is returned when the step at line 2 is executed.

The lemma now follows by induction on m.

Bounding the time used to execute these algorithms is complicated by the fact that they are

given as pseudocode that is not entirely complete or detailed. For example, steps 13 and 14 of

the setH involve the use of a universal Turing machine to carry out a set number of initial steps

of an algorithm, while step 7 of the setϕ algorithm includes an exhaustive search of all partial

truth assignments including truth values for the Boolean variables included in a given Boolean

formula — so that the executions of these steps certainly require more than constant time.

With that noted, let TH : N → N such that, for every integer m such that 0 ≤ m ≤ log2 n,

11

H(m) can be computed and H[m] can be set, by an execution of the setH algorithm using the

execution of at most TH(m) steps. Increasing the value of this function slightly (by replacing

it with T̂H(m) = max(TH(i) : 0 ≤ i ≤ m), if necessary) it can be assumed that this is a

non-decreasing function of m.

Similarly, let Tϕ : N → N such that, for every integer m such that 0 ≤ m ≤ log2 n, and every

string µ ∈ Σ⋆
SAT,H with length at most m, ϕ(ν) can be set, using an execution of the setϕ

algorithm with at most Tϕ(m) steps. This can be assumed to be a non-decreasing function

of m as well.

Consider an execution of the setH algorithm with input m where 0 ≤ m ≤ 2. If this is the

first execution of the algorithm with this input then the test at line 1 fails. The test at line 3 is

then checked and passed, and the execution of the algorithm ends after the steps at lines 4
and 5 are executed: Four steps are executed in total. On the other hand, if this is not the first

execution of the algorithm with this input then the test at line 1 is passed and the execution of

the algorithm ends after the execution of the step at line 2, so that two steps are executed. We

may therefore set TH(m) to be 4 when 0 ≤ m ≤ 2.

Now consider an execution of this algorithm on input m where m ≥ 3. If this is the first

execution of the algorithm with this input then, as above, the test at line 1 fails. The test at

line 3 is checked and also fails, so that the execution of the algorithm continues with the steps

at lines 6–21. Consider, first, the body of the inner loop (at lines 11–14). During this execution

the string µ has length at most log2 m, and i is an integer such that 0 ≤ i ≤ log2 log2 m. Thus

t = i · |µ|i

= (log2 log2 m) · (log2 m)log2 log2 m

While this grows asymptotically more slowly than mε for any positive real constant ε, it may

exceed this bound when m is small. It can be checked numerically that t ≤ m3/2 for every

integer m ≥ 2, and this bound will be sufficient to establish the claim here — for, with care, it

can be shown that the cost to compute a unary representation of t at line 11 is at most linear

in t. The cost to execute the step at line 12 is bounded by the cost to compute setϕ(µ), which

is at most Tϕ(⌊log2 m⌋).
Either the step at line 13 of the step at line 14 is executed. The bounds given at the end

of Lecture #4 — and the supplement for these notes, which describes a better emulation —

can be used to establish that each of these steps can be carried out using O(T (log T)(log m))
moves — and this is certain in O(m2).

Thus each execution of the body of the loop at lines 11–14 can be carried out using at most

Tϕ(⌊log2 m⌋) + cm2, for some positive constant c.

It follows by the above analysis (replacing n with m) that the number of strings µ ∈ Σ⋆
F,# with

length at most ⌊log2 m⌋ is at most 17
16 · mlog2 17. One can iterate over the set of all such strings

12

using a number of steps at most linear in the number of these, and this can be used that the

number of steps used for an execution of the loop at lines 10–14 is at most

17
16m

log2 17Tϕ(⌊log2 m⌋) + ĉ m2+log2 17

for a positive constant ĉ.

Consider, next, the body of the loop at lines 9–18. As suggested above, accessing and modi-

fying the array can certainly be carried out using time at most linear in m, so that the cost of an

execution of the body of this loop is dominated by the cost of an execution of the inner for loop

and, indeed is less than the expression given above if the value for the constant ĉ is slightly

increased.

A binary or decimal counter can have value from 0 to ⌊log2 log2 m⌋ using a number of steps

that is most linear in log2 log2 m — and a similar argument can be used to establish that (once

⌊log2 log2 m⌋ has been computed and available) the total cost to compare each counter value

with ⌊log2 log2 m⌋ is in O(log2 log2 m) as well. Thus this bounds the total cost of all executions

of the loop test at line 7 and, since there are at most ⌊log2 log2 m⌋ executions of the loop body,

it now follows that the total cost for the execution of the while loop at lines 7–19 is at most

17
16m

log2 17 log2 log2 m · Tϕ(⌊log2 m⌋) + ĉ m2+log2 17 log2 log2 m.

Considering the remaining steps — whose cost is certainly dominated by the cost of of the

execution of the loop, and which do not include additional uses of the method setϕ, — we may

now conclude that

TH(m) ≤

4 if 0 ≤ m ≤ 2,
17
16m

log2 17 log2 log2 m · Tϕ(⌊log2 m⌋)
+ĉ m2+log2 17 log2 log2 m if m ≥ 3.

(1)

Consider, now, the execution of the setϕ method on an input string µ ∈ Σ⋆
F,# with length ℓ.

As noted above, the cost to check whether ϕ(µ) is defined, and return its value it is, is at most

linear in c|µ| = cℓ for some positive constant c. It remains only to consider the case that ϕ(µ)
is not defined, so that the test at line 1 fails and the steps at lines 3–12 are executed.

The step at line 3 can certainly be carried out using O(|µ|) = O(ℓ) steps of a deterministic Tur-

ing machine. As discussed in Lecture #11, membership in LF can be decided deterministically

in quadratic time. Thus, since |ν| ≤ |µ| = ℓ, the test at line 4 can be checked at cost O(ℓ2),
and the operation can be completed (by reaching and executing the steps at lines 11 and 12
using a number of steps that is at most linear in cℓ, once again.

It remains only to consider the case that ν ∈ LF , so that |ν| ≥ 2 and the steps at lines 5–10
and 12 are reached and executed. Since TH is a non-decreasing function, and |ν| ≤ |µ| = ℓ,
the step at line 5 can be carried out using at most TH(ℓ) steps.

13

The test at line 6 can be carried out by checking first whether µ = νj for some positive integer j
— rejecting if this is not the case — and repeatedly dividing by |ν| to confirm that j is a power

of |ν| (rejecting it is not) and comparing log|ν| j to h otherwise. This can be carried out (using

a multiple tape Turing machine) using O(|ν|) = O(ℓ) steps. If this test fails then the steps at

lines 10 and 12 are executed, so the rest of the computation is carried out using O(cℓ) steps.

It remains only to consider the case that the test at line 6 passes, so that the steps at lines 7–9
and 12 are reached and executed.

Now, as noted in the description of the algorithm, the test at line 7 can be carried out by

exhaustive search — checking all partial truth assignments on the variables in the formula

encoded by ν, until either a satisfying truth assignment has been found or all truth assignments

have been checked. There are certainly at most 2ν ≤ 2ℓ truth assignments to check and —

again, using a method described in Lecture #8 — the value for the formula under any given

truth assignment can be checked using a number of steps at most linear in |ν|2 ≤ ℓ2. Thus

the cost of the test at line 7 is at most linear in ℓ2 · 2ℓ. Increasing the value of the constant c
if necessary (to ensure that c > 2) we may conclude that this step can be carried out using

O(cℓ) steps as well. The remaining steps to be carried out can be completed at this cost too.

It therefore follows that

Tϕ(ℓ) ≤ TH(ℓ) + c1 · cℓ (2)

for positive constants c1 and c (where c > 2), for every non-negative integer ℓ.

Now — choosing multiplicative constants c̃ and c to be large enough to establish the claimed

bounds when m and ℓ are small — the equations at lines (1) and (2) can be used to show (by

induction on m+ ℓ) that

TH(m) ≤ c̃m5+max(2,c)

and

Tϕ(ℓ) ≤ c · cℓ

for all integers m and ℓ. It now follows that the function fHΣ⋆
F → Σ⋆

0 such that

f(ω) = 1H(|ω|)

for every string ω ∈ Σ⋆
F is computable deterministically in polynomial time, using the method

setH — establishing Lemma 2.

14

