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Goals for Today

Even though researchers have now been trying to answer this

question for many years, now, we still do not know whether

P = NP . In this lecture...

• NP-Intermediate Languages are defined... and proved

to exist, if P 6= NP .

• The complexity class NEXPTIME is introduced, and it is

explained why this complexity class cannot be different

from EXPTIME, if P = NP .

• Relativized complexity classes are considered and

significant result concerning these is introduced. This,

effectively, eliminates some approaches to proving either

that P = NP , or that P 6= NP , that might otherwise be

considered.
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Goals for Today

• Unfortunately, proofs of some of these results are

extremely long and complicated.

Students will be expected to understand the meaning of

significant technical results, and their implications — and

not expected to understand (or even to have looked at)

proofs of these results.
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What if P 6= NP? NP-Intermediate Languages

Definition: A language L ⊆ Σ⋆ is NP-Intermediate if it

satisfies the following properties.

(a) L ∈ NP.

(b) L /∈ P.

(c) L is not NP-complete.

Note that if P = NP then no such languages exist, because

properties (a) and (b) are contradictory.
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What if P 6= NP? NP-Intermediate Languages

Claim: If P 6= NP then an NP-intermediate language exists.

• This is proved by describing an artificial (and confusing)

language, with the following properties:

• This is a language, L ⊆ Σ⋆

F ,#
for ΣF ,# = ΣF ∪ {#}, where ΣF

is the alphabet used to define encodings of Boolean

formulas, used in recent lectures.

• L includes strings of the form ω#g(|ω|)
where ω ∈ LFSAT and

g : N → N is a total function (that is not easy to describe,

and only of interest because it is needed for this proof).

• L ∈ NP .

• If L ∈ P then LFSAT ∈ P as well, so that P = NP .

• On the other hand, of L is NP-hard then LFSAT ∈ P , and

P = NP , once again.

It follows from the above that if P 6= NP then L must be an

NP-intermediate language.
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What if P 6= NP? NP-Intermediate Languages

• No “naturally arising” languages that would, provably, be

NP-intermediate if P 6= NP , are currently known.

• A reasonably “natural” language, that is believed to be

NP-intermediate, is described next.



NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P 6= NP? NP-Intermediate Languages

Definition: If G1 = (V1,E1) and G2 = (V2,E2) are undirected

graphs then G1 is isomorphic to G2 if there exists a bijection

ϕ : V1 → V2 such that, for all vertices u, v ∈ V1, (u, v) ∈ E1 if

and only if (ϕ(u), ϕ(v)) ∈ E2.

Consider the following decision problem:

Graph Isomorphism

Instance: A pair (G1,G2) of undirected graphs

Question: Is G1 isomorphic to G2?



NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P 6= NP? NP-Intermediate Languages

• An instance (G1,G2) of this problem can be encoded, as a

string in Σ⋆

G, by encodings of G1 and G2 (as defined in

Lecture #12), separated by a comma

• The language LIso ⊆ L⋆

G is one of small number of “natural”

languages that are suspected to be NP-intermediate —

and a “quasi-polynomial time” algorithm (using O(2(log n)c
)

steps in the worst case, for inputs with size n, in the worst

case) was announced in 2015.

• At present, no “natural” languages have been proved to be

NP-intermediate (assuming P 6= NP).
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What if P = NP? Complexity Classes Collapse

• Recall that

EXPTIME =
⋃

k≥1

TIME
(

2(nk )
)
.

• We can also define

NEXPTIME =
⋃

k≥1

NTIME
(

2(nk )
)
.

• Results given in Lecture #8 can be used to establish that

EXPTIME ⊆ NEXPTIME. It is not known whether

EXPTIME ( NEXPTIME — but it is suspected that this is

true.
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What if P = NP? Complexity Classes Collapse

Claim: If P = NP then EXPTIME = NEXPTIME.

Sketch of Proof: This involves another — simpler — use of

“padding”.

• Suppose that P = NP , and let L ⊆ Σ⋆ such that

L ∈ NEXPTIME. It is necessary and sufficient to prove that

L ∈ EXPTIME.

• Since L ∈ NEXPTIME there exists a nondeterministic

Turing machine M, with input alphabet Σ, and positive

integer constants c and k , such that

• M decides L, and

• for every string ω ∈ Σ⋆, the depth of the computation tree

of M and ω is at most c · 2(nk ).
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What if P = NP? Complexity Classes Collapse

• Let Σ̂ = Σ ∪ {#} and let

Lpad =

{
ω#c·2(|ω|k) ∣∣∣ ω ∈ L

}
⊆ Σ̂⋆

— so that if µ ∈ Σ̂⋆ then µ ∈ Lpad if and only if µ begins

with a string ω ∈ L and continues (and ends) with c · 2(|ω|
k)

copies of #.
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What if P = NP? Complexity Classes Collapse

Subclaim #1: Lpad ∈ NP.

How To Prove This: Consider a nondeterministic Turing

machine that does the following on input µ ∈ Σ̂⋆:

1. Reject unless µ = ω#c·2(|ω|k)
for some string ω ∈ Σ⋆.

2. If µ was not rejected, run M using ω as input —

accepting µ if M accepts ω and rejecting µ otherwise.

It can be argued that — since M decides L, and the

computation tree for M and ω has depth at most c · 2|ω|k — a

nondeterministic Turing machine, implementing this algorithm,

decides Lpad using polynomial time, because |µ| = |ω|+ c · 2|ω|k

if the step at line 2 is reached and executed.

Thus Lpad ∈ NP .
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What if P = NP? Complexity Classes Collapse

• Since P = NP (by assumption) it follows that Lpad ∈ P.

• Thus there exists a deterministic Turing machine M̂ with

input alphabet Σ̂, and positive integer constants ĉ1, d

and ĉ0, such that

• M̂ decides Lpad, and

• for any string µ ∈ Σ̂⋆, M̂ halts, ,when executed on input µ,

after making at most ĉ1 · |µ|d + ĉ0 moves.
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What if P = NP? Complexity Classes Collapse

Subclaim #2: L ∈ EXPTIME.

How To Prove This: Consider a deterministic Turing machine

that does the following on input ω ∈ Σ⋆:

1. Pad ω with copies of # to produce the string µ = ω#c·2(|ω|k)
.

2. Run M̂ on input µ, accepting ω if M̂ accepts µ, and

rejecting ω otherwise.

• Since M̂ decides Lpad, this Turing machine decides L.
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What if P = NP? Complexity Classes Collapse

• The number of moves, used by this Turing machine, is

dominated by the number of moves used in step 2. Since

M̂ is a fixed Turing machine that can be “embedded” (used

as subroutine) in this one, this is at most

ĉ1 ·
(
|ω|+ c · 2(|ω|

k)
)d

+ ĉ0 ∈ O
(

2(|ω|
kd)

)
.

• Since k and d are positive integer constants, so is kd —

and it follows that L ∈ EXPTIME, as claimed.
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What if P = NP? Complexity Classes Collapse

Conclusion of Proof of the Claim:

• Since L was arbitrarily chosen from NEXPTIME, it follows

that NEXPTIME ⊆ EXPTIME.

• Since EXPTIME ⊆ NEXPTIME as well,

EXPTIME = NEXPTIME,

as claimed.
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What if P = NP? Complexity Classes Collapse

• Virtually the same proof can be applied (with different

amounts of “padding”) to prove that if P = NP then

deterministic- and nondeterministic- complexity classes

“collapse” together at higher levels too.

• For example, one could modify this argument so establish

that if P = NP then the set of languages that are

deterministically decidable in “doubly exponential time” is

the same as the set of languages that are

nondeterministically decidable in “doubly exponential time”

too.
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Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Recall, from Lecture #6, that an oracle for a language

L ⊆ Σ
⋆

L is a device that is capable of reporting whether

any string ω ∈ Σ⋆

L is a member of L .

• Recall, as well, that an oracle Turing machine ML with

an oracle for a language L ⊆ Σ
⋆

L is a modified

deterministic multi-tape Turing machine that is allowed to

query an oracle for L in a single step.

• See Lecture #6 for additional details about oracle Turing

machines.
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Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Recall that we consider accesses to the oracle to have unit

cost, just like applications of other transitions of a Turing

machine.

• Just as for ordinary Turing machines, we can define the

time used ay a (one-tape or multi-tape) Turing machine M,

with an oracle for a language L ⊆ Σ⋆

L, on input ω to be the

number of steps that M takes, using its oracle for L, when

executed on the input string ω, before it halts.

• The worst-case running time of M can be defined as a

function TM : N → N in the same way as for an ordinary

(one-tape or multi-tape) Turing machine, as well.
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Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Continuing to modify definitions from previous lectures, we

can define TIMEL
1(f ), TIMEL

2(f ) and TIMEL(f ) by replacing

references to ordinary (one-tape, two-tape and multi-tape)

Turing machines in the definitions of TIME1(f ), TIME2(f )
and TIME(f ) with references to one-tape Turing machines

with an oracle for the language L ⊆ Σ⋆

L, two-tape Turing

machines with an oracle for L, and multi-tape Turing

machines with an oracle for L, respectively.

• We can then define

PL =
⋃

k∈N

TIMEL(nk ).
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Relativized Complexity Classes — and Limits of

Strategies for Proofs

Definition: A nondeterministic oracle Turing machine ML

with an oracle for a language L ⊆ Σ
⋆

L is a modified

nondeterministic multi-tape Turing machine that is modified (by

adding a query tape, and three special tapes used to access

the oracle) in the same way that a multi-tape deterministic

Turing machine is modified to obtain an oracle Turing machine

with an oracle for L.
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Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Once again, definitions for “standard” nondeterministic

Turing machines, given in Lecture #8, can be modified, by

replacing references to (multi-tape) nondeterministic Turing

machines with oracles, in order to say what it means for a

nondeterministic oracle Turing machine with an oracle for a

language L ⊆ Σ⋆

L to decide another language L̂, and to

define the complexity classes NTIMEL(f ), for a function

f : N → N, as well as the complexity class

NPL =
⋃

k∈N

NTIMEL(nk ).
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Relativized Complexity Classes — and Limits of

Strategies for Proofs

• We say that (correct) proofs of results about computation

— and the results, themselves — relativize if they are still

correct if regular (deterministic or nondeterministic) Turing

machines, are used in the proofs and claims, by

(deterministic or nondeterministic) Turing machines with

oracles.

• While the following result does not imply that it is

impossible to prove either that P = NP or P 6= NP , it

does eliminate the possibility that this question will be

resolved in various ways — because no proof of either of

these claims can relativize.
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Relativized Complexity Classes — and Limits of

Strategies for Proofs

Theorem (Baker, Gill, and Solovay):

(a) There exists a language A ⊆ Σ⋆

A (for some alphabet ΣA)

such that PA = NPA.

(b) There exists a language B ⊆ Σ⋆

B (for some alphabet ΣB)

such that PB 6= NPB .

Unfortunately, the proof of this claim is also quite complicated.

While details of the proof are given in a supplement for this

lecture it is (once again) “for interest only” — students will not

be expected to have looked at this material.
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