Computer Science 511 What If...? More about Nondeterministic Computation

Instructor: Wayne Eberly

Department of Computer Science University of Calgary

Lecture #13

Goals for Today

Even though researchers have now been trying to answer this question for many years, now, we still do not know whether $\mathcal{P} = \mathcal{NP}$. In this lecture...

- *NP*-Intermediate Languages are defined... and proved to exist, if *P* ≠ *NP*.
- The complexity class NEXPTIME is introduced, and it is explained why this complexity class *cannot* be different from EXPTIME, if P = NP.
- **Relativized complexity classes** are considered and significant result concerning these is introduced. This, effectively, *eliminates* some approaches to proving either that $\mathcal{P} = \mathcal{NP}$, or that $\mathcal{P} \neq \mathcal{NP}$, that might otherwise be considered.

Goals for Today

• Unfortunately, *proofs of some of these results are extremely long and complicated*.

Students will be expected to understand the meaning of significant technical results, and their implications — and *not* expected to understand (or even to have looked at) proofs of these results.

Definition: A language $L \subseteq \Sigma^*$ is \mathcal{NP} -Intermediate if it satisfies the following properties.

(a) *L* ∈ *NP*.
(b) *L* ∉ *P*.
(c) *L* is not *NP*-complete.

Note that if $\mathcal{P} = \mathcal{NP}$ then no such languages exist, because properties (a) and (b) are contradictory.

Claim: If $\mathcal{P} \neq \mathcal{NP}$ then an \mathcal{NP} -intermediate language exists.

- This is proved by describing an artificial (and confusing) language, with the following properties:
 - This is a language, L ⊆ Σ^{*}_{F,#} for Σ_{F,#} = Σ_F ∪ {#}, where Σ_F is the alphabet used to define encodings of Boolean formulas, used in recent lectures.
 - L includes strings of the form ω#^{g(|ω|)} where ω ∈ L_{FSAT} and g : N → N is a total function (that is *not* easy to describe, and only of interest because it is needed for this proof).
 - $L \in \mathcal{NP}$.
 - If $L \in \mathcal{P}$ then $L_{FSAT} \in \mathcal{P}$ as well, so that $\mathcal{P} = \mathcal{NP}$.
 - On the other hand, of *L* is \mathcal{NP} -hard then $L_{FSAT} \in \mathcal{P}$, and $\mathcal{P} = \mathcal{NP}$, once again.

It follows from the above that if $\mathcal{P} \neq \mathcal{NP}$ then *L* must be an \mathcal{NP} -intermediate language.

- No "naturally arising" languages that would, provably, be \mathcal{NP} -intermediate if $\mathcal{P} \neq \mathcal{NP}$, are currently known.
- A reasonably "natural" language, that is *believed* to be \mathcal{NP} -intermediate, is described next.

Definition: If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are undirected graphs then G_1 is **isomorphic** to G_2 if there exists a bijection $\varphi : V_1 \rightarrow V_2$ such that, for all vertices $u, v \in V_1$, $(u, v) \in E_1$ if and only if $(\varphi(u), \varphi(v)) \in E_2$.

Consider the following decision problem:

Graph Isomorphism

Instance: A pair (G_1, G_2) of undirected graphs *Question:* Is G_1 isomorphic to G_2 ?

- An instance (G₁, G₂) of this problem can be encoded, as a string in Σ^{*}_G, by encodings of G₁ and G₂ (as defined in Lecture #12), separated by a comma
- The language $L_{lso} \subseteq L_G^*$ is one of small number of "natural" languages that are *suspected* to be \mathcal{NP} -intermediate and a "quasi-polynomial time" algorithm (using $O(2^{(\log n)^c})$ steps in the worst case, for inputs with size *n*, in the worst case) was announced in 2015.
- At present, no "natural" languages have been *proved* to be \mathcal{NP} -intermediate (assuming $\mathcal{P} \neq \mathcal{NP}$).

Recall that

$$EXPTIME = \bigcup_{k \ge 1} \mathsf{TIME}\left(2^{(n^k)}\right).$$

We can also define

$$NEXPTIME = \bigcup_{k \ge 1} \text{NTIME} \left(2^{(n^k)} \right).$$

 Results given in Lecture #8 can be used to establish that *EXPTIME* ⊆ *NEXPTIME*. It is not known whether *EXPTIME* ⊊ *NEXPTIME* — but it is suspected that this is true.

Claim: If $\mathcal{P} = \mathcal{NP}$ then EXPTIME = NEXPTIME.

Sketch of Proof: This involves another — simpler — use of "padding".

- Suppose that *P* = *NP*, and let *L* ⊆ Σ* such that *L* ∈ *NEXPTIME*. It is necessary and sufficient to prove that *L* ∈ *EXPTIME*.
- Since L ∈ NEXPTIME there exists a nondeterministic Turing machine M, with input alphabet Σ, and positive integer constants c and k, such that
 - *M* decides *L*, and
 - for every string ω ∈ Σ*, the depth of the computation tree of *M* and ω is at most c ⋅ 2^(n^k).

• Let
$$\widehat{\Sigma} = \Sigma \cup \{ \# \}$$
 and let

$$\mathcal{L}_{\mathsf{pad}} = \left\{ \omega \#^{c \cdot 2^{\left(|\omega|^{k}\right)}} \mid \omega \in L \right\} \subseteq \widehat{\Sigma}^{\star}$$

— so that if $\mu \in \widehat{\Sigma}^*$ then $\mu \in L_{pad}$ if and only if μ begins with a string $\omega \in L$ and continues (and ends) with $c \cdot 2^{(|\omega|^k)}$ copies of #.

Subclaim #1: $L_{pad} \in \mathcal{NP}$.

How To Prove This: Consider a nondeterministic Turing machine that does the following on input $\mu \in \widehat{\Sigma}^*$:

1. **Reject** unless $\mu = \omega \#^{c \cdot 2^{(|\omega|^k)}}$ for some string $\omega \in \Sigma^*$.

2. If μ was not rejected, run *M* using ω as input *accepting* μ if *M* accepts ω and *rejecting* μ otherwise.

It can be argued that — since *M* decides *L*, and the computation tree for \mathcal{M} and ω has depth at most $c \cdot 2^{|\omega|^k}$ — a nondeterministic Turing machine, implementing this algorithm, decides L_{pad} using polynomial time, because $|\mu| = |\omega| + c \cdot 2^{|\omega|^k}$ if the step at line 2 is reached and executed.

Thus $L_{pad} \in \mathcal{NP}$.

- Since $\mathcal{P} = \mathcal{NP}$ (by assumption) it follows that $L_{pad} \in \mathcal{P}$.
- Thus there exists a *deterministic* Turing machine \widehat{M} with input alphabet $\widehat{\Sigma}$, and positive integer constants \widehat{c}_1 , d and \widehat{c}_0 , such that
 - \widehat{M} decides L_{pad} , and
 - for any string μ ∈ Σ^{*}, M̂ halts, ,when executed on input μ, after making at most c₁ · |μ|^d + c₀ moves.

Subclaim #2: $L \in EXPTIME$.

How To Prove This: Consider a deterministic Turing machine that does the following on input $\omega \in \Sigma^*$:

- 1. Pad ω with copies of # to produce the string $\mu = \omega \#^{c \cdot 2^{(|\omega|^k)}}$.
- 2. Run \widehat{M} on input μ , *accepting* ω if \widehat{M} accepts μ , and *rejecting* ω otherwise.
 - Since \widehat{M} decides L_{pad} , this Turing machine decides *L*.

 The number of moves, used by this Turing machine, is dominated by the number of moves used in step 2. Since *M* is a fixed Turing machine that can be "embedded" (used as subroutine) in this one, this is at most

$$\widehat{c}_1 \cdot \left(|\omega| + c \cdot 2^{\left(|\omega|^k
ight)}
ight)^d + \widehat{c}_0 \in O\left(2^{\left(|\omega|^{kd}
ight)}
ight).$$

 Since k and d are positive integer constants, so is kd and it follows that L ∈ EXPTIME, as claimed.

Conclusion of Proof of the Claim:

- Since *L* was arbitrarily chosen from *NEXPTIME*, it follows that *NEXPTIME* ⊆ *EXPTIME*.
- Since *EXPTIME* ⊆ *NEXPTIME* as well,

EXPTIME = NEXPTIME,

as claimed.

- Virtually the same proof can be applied (with different amounts of "padding") to prove that if P = NP then deterministic- and nondeterministic- complexity classes "collapse" together at higher levels too.
- For example, one could modify this argument so establish that if $\mathcal{P} = \mathcal{NP}$ then the set of languages that are deterministically decidable in "doubly exponential time" is the same as the set of languages that are nondeterministically decidable in "doubly exponential time" too.

- Recall, from Lecture #6, that an *oracle for a language L* ⊆ Σ^{*}_L is a device that is capable of reporting whether any string ω ∈ Σ^{*}_L is a member of *L*.
- Recall, as well, that an *oracle Turing machine M_L with* an oracle for a language L ⊆ Σ^{*}_L is a modified deterministic multi-tape Turing machine that is allowed to query an oracle for L in a single step.
- See Lecture #6 for additional details about oracle Turing machines.

- Recall that we consider accesses to the oracle to have unit cost, just like applications of other transitions of a Turing machine.
- Just as for ordinary Turing machines, we can define the *time* used ay a (one-tape or multi-tape) Turing machine M, with an oracle for a language $L \subseteq \Sigma_L^*$, on input ω to be the number of steps that M takes, using its oracle for L, when executed on the input string ω , before it halts.
- The *worst-case running time* of *M* can be defined as a function *T_M* : N → N in the same way as for an ordinary (one-tape or multi-tape) Turing machine, as well.

- Continuing to modify definitions from previous lectures, we can define $TIME_1^L(f)$, $TIME_2^L(f)$ and $TIME^L(f)$ by replacing references to ordinary (one-tape, two-tape and multi-tape) Turing machines in the definitions of $TIME_1(f)$, $TIME_2(f)$ and TIME(f) with references to one-tape Turing machines with an oracle for the language $L \subseteq \Sigma_L^*$, two-tape Turing machines with an oracle for *L*, and multi-tape Turing machines with an oracle for *L*, respectively.
- We can then define

$$\mathcal{P}^L = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}^L(n^k).$$

Definition: A nondeterministic oracle Turing machine M_L with an oracle for a language $L \subseteq \Sigma_L^*$ is a modified nondeterministic multi-tape Turing machine that is modified (by adding a query tape, and three special tapes used to access the oracle) in the same way that a multi-tape deterministic Turing machine is modified to obtain an oracle Turing machine with an oracle for L.

 Once again, definitions for "standard" nondeterministic Turing machines, given in Lecture #8, can be modified, by replacing references to (multi-tape) nondeterministic Turing machines with oracles, in order to say what it means for a nondeterministic oracle Turing machine with an oracle for a language L ⊆ Σ^{*}_L to **decide** another language L̂, and to define the complexity classes NTIME^L(f), for a function f : N → N, as well as the complexity class

$$\mathcal{NP}^L = \bigcup_{k \in \mathbb{N}} \mathsf{NTIME}^L(n^k).$$

- We say that (correct) proofs of results about computation

 and the results, themselves *relativize* if they are still correct if regular (deterministic or nondeterministic) Turing machines, are used in the proofs and claims, by (deterministic or nondeterministic) Turing machines with oracles.
- While the following result *does not* imply that it is impossible to prove either that *P* = *NP* or *P* ≠ *NP*, it *does* eliminate the possibility that this question will be resolved in various ways — because no proof of either of these claims can relativize.

Theorem (Baker, Gill, and Solovay):

- (a) There exists a language $A \subseteq \Sigma_A^*$ (for some alphabet Σ_A) such that $\mathcal{P}^A = \mathcal{NP}^A$.
- (b) There exists a language $B \subseteq \Sigma_B^*$ (for some alphabet Σ_B) such that $\mathcal{P}^B \neq \mathcal{NP}^B$.

Unfortunately, the proof of *this* claim is also quite complicated. While details of the proof are given in a supplement for this lecture it is (once again) "for interest only" — students will not be expected to have looked at this material.