
NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Computer Science 511
What If...? More about Nondeterministic Computation

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #13

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Goals for Today

Even though researchers have now been trying to answer this

question for many years, now, we still do not know whether

P = NP . In this lecture...

• NP-Intermediate Languages are defined... and proved

to exist, if P 6= NP .

• The complexity class NEXPTIME is introduced, and it is

explained why this complexity class cannot be different

from EXPTIME, if P = NP .

• Relativized complexity classes are considered and

significant result concerning these is introduced. This,

effectively, eliminates some approaches to proving either

that P = NP , or that P 6= NP , that might otherwise be

considered.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Goals for Today

• Unfortunately, proofs of some of these results are

extremely long and complicated.

Students will be expected to understand the meaning of

significant technical results, and their implications — and

not expected to understand (or even to have looked at)

proofs of these results.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P 6= NP? NP-Intermediate Languages

Definition: A language L ⊆ Σ⋆ is NP-Intermediate if it

satisfies the following properties.

(a) L ∈ NP.

(b) L /∈ P.

(c) L is not NP-complete.

Note that if P = NP then no such languages exist, because

properties (a) and (b) are contradictory.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P 6= NP? NP-Intermediate Languages

Claim: If P 6= NP then an NP-intermediate language exists.

• This is proved by describing an artificial (and confusing)

language, with the following properties:

• This is a language, L ⊆ Σ⋆

F ,#
for ΣF ,# = ΣF ∪ {#}, where ΣF

is the alphabet used to define encodings of Boolean

formulas, used in recent lectures.

• L includes strings of the form ω#g(|ω|)
where ω ∈ LFSAT and

g : N → N is a total function (that is not easy to describe,

and only of interest because it is needed for this proof).

• L ∈ NP .

• If L ∈ P then LFSAT ∈ P as well, so that P = NP .

• On the other hand, of L is NP-hard then LFSAT ∈ P , and

P = NP , once again.

It follows from the above that if P 6= NP then L must be an

NP-intermediate language.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P 6= NP? NP-Intermediate Languages

• No “naturally arising” languages that would, provably, be

NP-intermediate if P 6= NP , are currently known.

• A reasonably “natural” language, that is believed to be

NP-intermediate, is described next.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P 6= NP? NP-Intermediate Languages

Definition: If G1 = (V1,E1) and G2 = (V2,E2) are undirected

graphs then G1 is isomorphic to G2 if there exists a bijection

ϕ : V1 → V2 such that, for all vertices u, v ∈ V1, (u, v) ∈ E1 if

and only if (ϕ(u), ϕ(v)) ∈ E2.

Consider the following decision problem:

Graph Isomorphism

Instance: A pair (G1,G2) of undirected graphs

Question: Is G1 isomorphic to G2?

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P 6= NP? NP-Intermediate Languages

• An instance (G1,G2) of this problem can be encoded, as a

string in Σ⋆

G, by encodings of G1 and G2 (as defined in

Lecture #12), separated by a comma

• The language LIso ⊆ L⋆

G is one of small number of “natural”

languages that are suspected to be NP-intermediate —

and a “quasi-polynomial time” algorithm (using O(2(log n)c
)

steps in the worst case, for inputs with size n, in the worst

case) was announced in 2015.

• At present, no “natural” languages have been proved to be

NP-intermediate (assuming P 6= NP).

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

• Recall that

EXPTIME =
⋃

k≥1

TIME
(

2(nk)
)
.

• We can also define

NEXPTIME =
⋃

k≥1

NTIME
(

2(nk)
)
.

• Results given in Lecture #8 can be used to establish that

EXPTIME ⊆ NEXPTIME. It is not known whether

EXPTIME (NEXPTIME — but it is suspected that this is

true.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

Claim: If P = NP then EXPTIME = NEXPTIME.

Sketch of Proof: This involves another — simpler — use of

“padding”.

• Suppose that P = NP , and let L ⊆ Σ⋆ such that

L ∈ NEXPTIME. It is necessary and sufficient to prove that

L ∈ EXPTIME.

• Since L ∈ NEXPTIME there exists a nondeterministic

Turing machine M, with input alphabet Σ, and positive

integer constants c and k , such that

• M decides L, and

• for every string ω ∈ Σ⋆, the depth of the computation tree

of M and ω is at most c · 2(nk).

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

• Let Σ̂ = Σ ∪ {#} and let

Lpad =

{
ω#c·2(|ω|k) ∣∣∣ ω ∈ L

}
⊆ Σ̂⋆

— so that if µ ∈ Σ̂⋆ then µ ∈ Lpad if and only if µ begins

with a string ω ∈ L and continues (and ends) with c · 2(|ω|
k)

copies of #.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

Subclaim #1: Lpad ∈ NP.

How To Prove This: Consider a nondeterministic Turing

machine that does the following on input µ ∈ Σ̂⋆:

1. Reject unless µ = ω#c·2(|ω|k)
for some string ω ∈ Σ⋆.

2. If µ was not rejected, run M using ω as input —

accepting µ if M accepts ω and rejecting µ otherwise.

It can be argued that — since M decides L, and the

computation tree for M and ω has depth at most c · 2|ω|k — a

nondeterministic Turing machine, implementing this algorithm,

decides Lpad using polynomial time, because |µ| = |ω|+ c · 2|ω|k

if the step at line 2 is reached and executed.

Thus Lpad ∈ NP .

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

• Since P = NP (by assumption) it follows that Lpad ∈ P.

• Thus there exists a deterministic Turing machine M̂ with

input alphabet Σ̂, and positive integer constants ĉ1, d

and ĉ0, such that

• M̂ decides Lpad, and

• for any string µ ∈ Σ̂⋆, M̂ halts, ,when executed on input µ,

after making at most ĉ1 · |µ|d + ĉ0 moves.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

Subclaim #2: L ∈ EXPTIME.

How To Prove This: Consider a deterministic Turing machine

that does the following on input ω ∈ Σ⋆:

1. Pad ω with copies of # to produce the string µ = ω#c·2(|ω|k)
.

2. Run M̂ on input µ, accepting ω if M̂ accepts µ, and

rejecting ω otherwise.

• Since M̂ decides Lpad, this Turing machine decides L.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

• The number of moves, used by this Turing machine, is

dominated by the number of moves used in step 2. Since

M̂ is a fixed Turing machine that can be “embedded” (used

as subroutine) in this one, this is at most

ĉ1 ·
(
|ω|+ c · 2(|ω|

k)
)d

+ ĉ0 ∈ O
(

2(|ω|
kd)

)
.

• Since k and d are positive integer constants, so is kd —

and it follows that L ∈ EXPTIME, as claimed.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

Conclusion of Proof of the Claim:

• Since L was arbitrarily chosen from NEXPTIME, it follows

that NEXPTIME ⊆ EXPTIME.

• Since EXPTIME ⊆ NEXPTIME as well,

EXPTIME = NEXPTIME,

as claimed.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

What if P = NP? Complexity Classes Collapse

• Virtually the same proof can be applied (with different

amounts of “padding”) to prove that if P = NP then

deterministic- and nondeterministic- complexity classes

“collapse” together at higher levels too.

• For example, one could modify this argument so establish

that if P = NP then the set of languages that are

deterministically decidable in “doubly exponential time” is

the same as the set of languages that are

nondeterministically decidable in “doubly exponential time”

too.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Recall, from Lecture #6, that an oracle for a language

L ⊆ Σ
⋆

L is a device that is capable of reporting whether

any string ω ∈ Σ⋆

L is a member of L .

• Recall, as well, that an oracle Turing machine ML with

an oracle for a language L ⊆ Σ
⋆

L is a modified

deterministic multi-tape Turing machine that is allowed to

query an oracle for L in a single step.

• See Lecture #6 for additional details about oracle Turing

machines.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Recall that we consider accesses to the oracle to have unit

cost, just like applications of other transitions of a Turing

machine.

• Just as for ordinary Turing machines, we can define the

time used ay a (one-tape or multi-tape) Turing machine M,

with an oracle for a language L ⊆ Σ⋆

L, on input ω to be the

number of steps that M takes, using its oracle for L, when

executed on the input string ω, before it halts.

• The worst-case running time of M can be defined as a

function TM : N → N in the same way as for an ordinary

(one-tape or multi-tape) Turing machine, as well.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Continuing to modify definitions from previous lectures, we

can define TIMEL
1(f), TIMEL

2(f) and TIMEL(f) by replacing

references to ordinary (one-tape, two-tape and multi-tape)

Turing machines in the definitions of TIME1(f), TIME2(f)
and TIME(f) with references to one-tape Turing machines

with an oracle for the language L ⊆ Σ⋆

L, two-tape Turing

machines with an oracle for L, and multi-tape Turing

machines with an oracle for L, respectively.

• We can then define

PL =
⋃

k∈N

TIMEL(nk).

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Relativized Complexity Classes — and Limits of

Strategies for Proofs

Definition: A nondeterministic oracle Turing machine ML

with an oracle for a language L ⊆ Σ
⋆

L is a modified

nondeterministic multi-tape Turing machine that is modified (by

adding a query tape, and three special tapes used to access

the oracle) in the same way that a multi-tape deterministic

Turing machine is modified to obtain an oracle Turing machine

with an oracle for L.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Relativized Complexity Classes — and Limits of

Strategies for Proofs

• Once again, definitions for “standard” nondeterministic

Turing machines, given in Lecture #8, can be modified, by

replacing references to (multi-tape) nondeterministic Turing

machines with oracles, in order to say what it means for a

nondeterministic oracle Turing machine with an oracle for a

language L ⊆ Σ⋆

L to decide another language L̂, and to

define the complexity classes NTIMEL(f), for a function

f : N → N, as well as the complexity class

NPL =
⋃

k∈N

NTIMEL(nk).

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Relativized Complexity Classes — and Limits of

Strategies for Proofs

• We say that (correct) proofs of results about computation

— and the results, themselves — relativize if they are still

correct if regular (deterministic or nondeterministic) Turing

machines, are used in the proofs and claims, by

(deterministic or nondeterministic) Turing machines with

oracles.

• While the following result does not imply that it is

impossible to prove either that P = NP or P 6= NP , it

does eliminate the possibility that this question will be

resolved in various ways — because no proof of either of

these claims can relativize.

NP-Intermediate Languages Complexity Classes Collapse Relativized Complexity Classes

Relativized Complexity Classes — and Limits of

Strategies for Proofs

Theorem (Baker, Gill, and Solovay):

(a) There exists a language A ⊆ Σ⋆

A (for some alphabet ΣA)

such that PA = NPA.

(b) There exists a language B ⊆ Σ⋆

B (for some alphabet ΣB)

such that PB 6= NPB .

Unfortunately, the proof of this claim is also quite complicated.

While details of the proof are given in a supplement for this

lecture it is (once again) “for interest only” — students will not

be expected to have looked at this material.

	NP-Intermediate Languages
	Complexity Classes Collapse
	Relativized Complexity Classes

