
Lecture #13: What If...? More about

Nondeterministic Computation

More about Relativization and Relativized Proofs

This document includes a proof of the result, which was included at the end of the notes for

Lecture #13.

Theorem (Baker, Gill, and Solovay).

(a) There exists a language A ⊆ Σ⋆
A (for some alphabet ΣA) such that PA = NPA.

(b) There exists a language B ⊆ Σ⋆
B (for some alphabet ΣB) such that PB 6= NPB .

Once again, this is “for interest only:” CPSC 511 will not need to read this material in order to

do well in this course.

A Language A Such That PA
= NPA

Let ΣUTM be the alphabet used to encode deterministic Turing machines and their inputs,

described in Lecture #4. Consider the language LEXPTIME ⊆ Σ⋆
UTM consisting of encodings of

• a deterministic Turing machine M ,

• an input string ω for M , and

• a positive integer t — encoded using its binary representation

such that M accepts ω after taking at most t steps.

Easy Exercise: Prove that LEXPTIME is complete for EXPTIME with respect to polynomial-time

many-one reductions.

Now let A = LEXPTIME .

1

On input ω ∈ Σ⋆:

1. Write onto the query tape a string in Σ⋆
UTM that encodes

• the deterministic Turing machine M ,

• the input string ω, and

• the integer t = c ·2(n
k) (in binary), where n = |ω|.

Then enter the query state.

2. If the machine is now in state qY then accept ω. Other-

wise, reject ω.

Figure 1: Oracle Computation to Decide Membership in L

Claim 1. EXPTIME ⊆ PA.

Proof. Since L ∈ EXPTIME there exists a deterministic Turing machine M and positive inte-

ger constants c and k such that

• M decides L, and

• M uses at most c · 2(n
k) steps on every string ω ∈ Σ⋆ with length n, for every integer

n ≥ 0.

Consider a deterministic oracle Turing machine M̂ — with an oracle for A — that imple-

ments the algorithm shown in Figure 1. This is a deterministic oracle Turing machine, with

an oracle for LEXPTIME , that decides the language L. Furthermore, since c and k are positive

integer constants the binary representation of t = c · 2(n
k) is a string with length polynomial

in n that can be computed from n, deterministically, using time polynomial in n as well.

Since M is a fixed Turing machine, its (smallest) encoding is a fixed string, and step 1 of this

algorithm can be carried out deterministically using time polynomial in n = |ω| in the worst

case. Since step 2 only requires a constant number of steps, it follows that L ∈ PA.

Since L was an arbitrarily chosen language in EXPTIME it follows that EXPTIME ⊆ PA. as

claimed.

Certainly, PA ⊆ NPA. If NPA ⊆ EXPTIME then it will follow that

EXPTIME ⊆ PA ⊆ NPA ⊆ EXPTIME

so that PA = NPA, as claimed. Hence the following result is all that is needed to complete a

proof of part (a) of the theorem.

2

On input ω ∈ Σ⋆:

1. Use exhaustive search to traverse the computation tree for M on input ω. Go

to step 2 whenever M enters its query state.

If an accepting configuration is found in the computation tree being traversed

then accept ω. Otherwise (after the entire computation tree has been tra-

versed) reject ω.

2. If the non-blank part of M ’s query tape stores a single string in Σ⋆
UTM then

execute M̂ , using this as the input string. If M̂ accepts this string then erase

the query tape, move the query tape head back to the leftmost cell, and enter

state qY — returning control to the simulation of M , and resuming step 1.

In all other cases erase the query tape, move the query tape head back to the

leftmost cell, and enter state qN — returning control to the simulation of M and

resuming step 1, once again.

Figure 2: Algorithm to Establish Membership in EXPTIME

Claim 2. NPA ⊆ EXPTIME.

Proof. The result will be established by showing that it is possible to deterministically complete

a nondeterministic polynomial-time computation, that includes oracle queries for A, in singly

exponential time.

With that noted, let L ⊆ Σ⋆ such that L ∈ NPA. It is necessary and sufficient to show that

L ∈ EXPTIME.

Since L ∈ NPA there exists a nondeterministic oracle Turing machine M with an oracle

for A, that decides L, using time at most c1n
k + c0 for every input string ω ∈ Σ⋆ with length n

— for positive integer constants c1, k, and c0. It follows that there is also a positive integer

constant ĉ (which depends on M ’s transition function) such that the computation tree for M ,

on an input string ω ∈ Σ⋆ with length n, has size at most ĉ(c1n
k+c0).

This computation tree includes oracle queries. However, since A = LEXPTIME ∈ EXPTIME,

there is a deterministic Turing machine M̂ that decides LEXPTIME , using time at most d · 2(n
k̂),

for any input string with length n, for positive integer constants d and k̂.

Now consider a deterministic Turing machine, M̃ , with input alphabet Σ, that implements the

algorithm shown in Figure 2, above. It can be shown that M̃ is a (standard) deterministic Turing

machine that decides the language L

Since M̂ is a fixed deterministic Turing machine, M̃ can (essentially) include a copy of it, so

that the simulation of each move of M̂ , included in executions of step 2, can be carried out

3

using a constant number of moves of M̃ . A simulation of M̂ also includes an “initialization”

phase, in which the query tape is used to set up M̂ ’s input tape. The cost to “clean up”’ the

oracle tape and reposition the tape head, at the end, should also be considered. With a bit of

work, it can be argued that the cost of this is at most linear in the number of moves made by M
since the last time the oracle got queried — so the total cost of this is at most linear in the cost

needed to simulate M , and can now be ignored: It will be dominated by the cost of other steps

that are being counted.

Each tape of M can be included as a tape of M̃ . M ’s “current state”’ can either be remembered

using M̃ ’s finite control or stored as a symbol on a separate tape.

One more tape of M̃ can be used to represent a stack , representing the branch in M ’s com-

putation tree that is currently being checked — including sequence of moves that were made.

If this also stores information about when “moves left” caused a tape head to stay where it is,

because the tape head was already at the leftmost cell, then this allows a move to be reversed

or rolled back when information is popped off this stack.

This is all you need for depth-first search to be used to traverse M ’s computation tree on the

input string, using a number of steps — excluding the cost for executions of M̂ — that is linear

in the size, ĉ(c1n
k+c0), of this tree.

Next consider any branch (path from the roof down to a leaf) in this tree. The number of these

is certainly also at least ĉ(c1n
k+c0), and the sum of the lengths of all strings (in Σ⋆

UTM) that are

written onto M ’s query tape and asked about, as this branch down the tree is executed, must

be at most the depth of this branch — at most c1n
k + c0.

Let f(m) = d · 2(m
k̂) — and notice that if m1,m2 ∈ N then

f(m1) + f(m2) ≤ f(m1 +m2).

This can be used to show that the total time needed, for all simulations of M̂ , as any branch in

M ’s computation tree is checked, is at most

f(c1n
k + c0) = d · 2((c1n

k+c0)k̂)

Adding everything up, one can see that the time used by M̃ is at most linear in

ĉ(c1n
k+c0)

(
c1n

k + c0 + d2((c1n
k+c0)k̂)

)
∈ O

(
2n

ℓ
)

for some integer constant ℓ such that

ℓ ≥ (k + 1) · ⌈log2 ĉ ⌉+ (k + 1)(k̂ + 1).

It follows that L ∈ EXPTIME. Since L was arbitrarily chosen from NPA, this implies that

NPA ⊆ EXPTIME — as claimed.

As noted above it now follows that PA = NPA, as needed to establish part (a) of the theorem.

4

A Language B such that PB 6= NPB

Now let Σ = {0, 1}. Let B ⊆ Σ⋆ be a language to be described later, and let LB ⊆ {1}⋆ such

that, for every integer n ≥ 0, 1n ∈ LB if and only if B includes at least one string in Σ⋆ with

length n:

1
n ∈ LB ⇐⇒ B ∩ Σn 6= ∅.

Claim 3. LB ∈ NPB , for every language B ⊆ Σ⋆.

Proof. Let B ⊆ Σ⋆. Consider a nondeterministic oracle Turing machine, with an oracle for B,

that sweeps over its input guessing symbols and writing them onto the query tape as it goes,

so that if the input is 1n for n ≥ 0 then a string in Σ⋆ with length n is written onto it.

If the oracle Turing machine then enters its query state and, one step later.

• accepts if the next state entered is qY , and

• rejects if the next state entered is qN ,

then this is a nondeterministic oracle Turing machine, with an oracle for B, that decides LB ,

using at most n+ 3 steps when the input has length n.

It follows that LB ∈ NPB. Since B was an arbitrarily chosen language over Σ, this establishes

the claim.

It is important that LB ∈ NPB for every language B ⊆ Σ⋆, because a diagonalization

argument will be used to describe the language B whose existence is asserted in part (b) of

the theorem — and this language will be constructed “on the fly.”

It is not hard to modify the encoding of deterministic Turing machines to produce an encoding

for deterministic oracle Turing machines — you simply need to include encodings of the

query state, “Yes” state and “No state.”1 We may therefore assume that

M0,M1,M2, . . .

is an enumeration (or “listing”) of all deterministic oracle Turing machines.

The set N × N is also enumerable — and this implies that it is possible to enumerate, or “list”

all of the ordered pairs (Mi, j) for i, j ∈ N.

1You can also require these states to be encoded as qQ, qY, and qN, respectively.

5

The goal of the construction to be described will be to ensure that, after (Mi, j) has been pro-

cessed, make sure that either

(a) Mi does not decide LB ,

or

(b) Mi uses more than nj steps when executed on the input string 1n, for some integer n ≥ 1.

Assuming that this goal has been accomplished, suppose that B ∈ PB . Then there must exist

positive integers c1, c0 and k, and a deterministic oracle Turing machine Mi, with an oracle

for B, that decides LB — using at most c1n
k + c0 steps, on the input 1n, for every integer

n ≥ 0. However, a contradiction is obtained: If we set j = c1 + k + c0 then

c1n
k + c0 ≤ nc1+k+c0 = n j

for all n ∈ N such that n ≥ 1, and neither property (a) nor (b) is satisfied for this choice of i
and j. It will therefore follow that B /∈ PB , so that PB 6= NPB.

Consider the construction shown in Figure 3 on page 7.

Throughout the construction the following properties will be satisfied.

(c) B ⊆ D ⊆ Σ⋆ where Σ = {0, 1}.

(d) D is a finite subset of Σ⋆. We call the strings in D committed — because the question

of whether they might eventually be included in B has already been decided. That is, no

string ω ∈ Σ⋆ is ever added to B if it already belongs to D. All other strings in Σ⋆ are

uncommitted, and it is possible that they might eventually be included in B later on.

(e) If any deterministic oracle Turing machine Mi has been run on input 1m before this, during

this construction, then D includes every string in Σ⋆ with length m — so it has already

been “decided” whether 1m ∈ LB.

(f) On the other hand, if no deterministic oracle Turing machine Mi has been run on in-

put 1m before this, during this construction, that B does not include any strings in Σ⋆

with length m.

(g) E is a finite subset of N. For i ∈ N, if i ∈ E then Mi has been eliminated : It has already

been proved that Mi does not decide LB, because property (a) was established when

(Mi, j) was processed for some integer j ≥ 0.

Note that properties (c)–(g) do initially hold.

Consider, now, the processing of Mi,j . If i ∈ E, as the figure should suggest, it is not necessary

to do anything because machine Mi has been eliminated. If Mi’s input alphabet has size

greater than one then one can simply include i in E and do nothing more, because B cannot

possibly the the language of Mi.

6

1. B := ∅

2. D := {λ}

3. E := ∅

4. while processing (Mi, j) {

5. if (i /∈ E) {

6. if (Mi’s tape alphabet has size greater than one) {

7. E := E ∪ {i}

} else {

8. Set n to be a non-negative integer such that strictly more than nj strings

in {0, 1}⋆ do not belong to D.

9. Carry out the first nj steps of the execution of Mi on input 1j .

(a) If Mi asks whether a string ω ∈ D belongs to B during these steps

then say “Yes” (moving to state qY) if ω has already been included

in B, and say “No” (moving to state qN) otherwise — without chang-

ing either B or D.

(b) If Mi asks whether a string ω ∈ Σ⋆ belongs to B, where ω /∈ D,

then include ω in D (replacing this set with D∪{ω}), without chang-

ing B, and say “No” (moving to state qN).

10. if (Mj accepted 1n after taking at most nj steps) {

11. Include all uncommitted strings in Σ⋆ with length n in D, but not in B
— so that 1n /∈ LB and i has been added to E.

12. } else if (Mj rejected 1 after taking at most nj steps) {

13. Choose a string ζ ∈ Σ⋆ with length n such that ζ /∈ D. Add ζ to

both B and D — so that 1n ∈ LB and i has been added to E. Then

add all other uncommitted strings in Σ⋆ with length n to D, but not

to B.

} else {

14. Include all uncommitted strings in Σ⋆ with length n in D but not in B
— so that 1 /∈ LB .

}

}

}

}

Figure 3: Construction of the Desired Language B

7

Suppose, therefore, that i /∈ E and M ′

is tape alphabet has size one so that, in effect, Mi’s

tape alphabet is {1}. Then, since D is a finite subset of Σ⋆, there are 2n strings in Σ⋆ with

length n for every non-negative integer n, and nj ∈ o(2n), there exists a non-negative integer

such that strictly more than nj strings in Σ⋆ still do not belong to D, as required at line 8.

Note that, during the simulation of the first nj steps of Mi on input 1n at line 9, all responses by

the oracle are consistent with answers given in the past, since a queried string’s membership

in B is checked to determine the oracle’s answer whenever the queried string belongs to D.

Note, as well that, since queried strings that do not belong to D are added to this set, while

saying “No” and without adding them to B, no strings are ever included in B during this part of

the process.

Suppose, now, that properties (c)–(g) held before the execution of the step at line 9. Then

properties (c) and (d) still hold after the execution of this step, because only finitely many

strings in Σ⋆ were added during this execution (at most one for each step taken in the Mi’s

execution on its first nj steps) and no string was added to B unless it was added to D at the

same time. Property (e) holds — for it concerns executions on inputs 1n̂ that have taken place

before this execution of the step at line 9, because n was chosen to be a non-negative integer

such that D does not include all strings with length n— and no strings have been removed

from D during the execution of this step. Similarly, property (f) must still hold because the

execution of the step at line 9 did not add any new strings to B. The execution of the step at

line 9 does not change the set E, so property (g) is satisfied after the execution of this step if

it was executed before it.

Consider, next, the steps at lines 10–14, and suppose, again, that properties (c)–(g) held be-

fore the execution of these steps. Once again, since only finitely many strings have been

added to D and none were added to B unless they were added to D at the same time, proper-

ties (c) and (d) hold, once again, after these steps have been executed. Since all uncommitted

strings with length n are added to D when one of the steps at lines 11, 13 or 14 are executed,

property (e) is satisfied at the end of the execution of these steps as well. Since the only

string added to B, and its length is n (as Mi has been run on 1n during the construction),

property (f) is also satisfied after these steps if it was satisfied before them. Since at most one

non-negative integer, i has been added to E during the execution of these steps, and it has

been proved that Mi does not compute LB at this point in the construction, property (g) is also

satisfied at the end of the execution of these steps.

Thus properties (c)–(g) are all satisfied after each step in the execution of this construction

(after the initialization of B, D and E) as claimed. Furthermore, property (a) is established

for i if either of the steps at lines 11 or 13 was reached and executed when processing (Mi, j),
while property (b) was established in the step at line 14 was reached and executed instead.

8

This establishes the following — as needed to establish part (b) of the theorem, as well.

Claim 4. Let B ⊆ Σ⋆ be the set of strings that are eventually included in the set called “B” as

the constructions shown in Figure 3 is applied. Then PB 6= NPB .

Additional Results

Computations with a random oracle — which responds to every unique query with a (truly)

random response — have also been considered. Furthermore, it was conjectured by Bennet

and Gill [1] that two “acceptable” complexity classes are equal if and only if they are equal (with

probability 1) under a random oracle — Bennet and Gill’s paper can be consulted for a more

precise definition of this. If this conjecture was true, then it would have followed from other

results in the paper that P 6= NP .

However, as later established by Chang, Chor et al. [2], this conjecture is false. Consequently,

Bennet and Gill’s result is now considered to be, at best, “weak” evidence that P 6= NP , and

this question remains open.

References

[1] C. H. Bennett and J. Gill. Relative to a random oracle a, PA != NPA != co-NPA with

probability 1. SIAM Journal on Computing, 10:96–113, 1981.

[2] Richard Chang, Benny Chor, Oded Goldreich, Juris Hartmanis, Johan Hastad, Desh Ran-

jan, and Pankaj Rohtagi. The random oracle hypothesis is false. Journal of Computer and

System Sciences, 49:24–39, 1994.

9

