Lecture #14: Introduction to the Polynomial Hierarchy Exercises and Review

Additional Exercises

1. Suppose you are given a sequence $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$ of Boolean formulas, and you wish to know how many of these are satisfiable. A decision problem, concerning this, is as follows.

How Many are Satisfiable?

Instance:	A sequence
	$\mathcal{F}_1, \mathcal{F}_2, \dots, \mathcal{F}_n$
	and an integer k such that $0 \le k \le n$.
Question:	Are <i>exactly</i> k of the Boolean formulas $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$ satisfiable
	(so that $n - k$ of these Boolean formulas are <i>unsatisfiable</i> ?

Let $\widehat{\Sigma}_F = \Sigma_F \cup \{(,), ,\}$ where Σ_F that was introduced in Lecture #11, and used to encode Boolean formulas. Then an instance of the above decision problem, including a sequence of Boolean formulas $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$ and an integer k as above, can be encoded as a string in $\widehat{\Sigma}_F^*$ consisting of the encodings of each of the formulas $\mathcal{F}_1, \mathcal{F}_2, \ldots, \mathcal{F}_n$, and the unpadded decimal representation of the integer k, separated by commas and encoded by brackets.

Let $L_{\text{Formulas+Number}} \subseteq \widehat{\Sigma}^*$ be the language of encodings of instances of this decision problem, and let $L_{\text{HowManySatisfiable}} \subseteq L_{\text{Formulas+Number}}$ be the language of encodings of Yes-instances of this decision problem.

- (a) Sketch a proof that $L_{\text{Formulas+Number}} \in \mathcal{P}$.
- (b) Sketch a proof that $L_{\text{HowManySatisfiable}} \in \Sigma_2 \mathcal{P} \cap \Pi_2 \mathcal{P}$.
- 2. Prove that $\Sigma_i \mathcal{P} \cup \Pi_i \mathcal{P} \subseteq \Sigma_{i+1} \mathcal{P} \cap \Pi_{i+1} \mathcal{P}$ for every positive integer *i*.

Questions for Review

- 1. What is an *alternating Turing machine*? How is it similar to a nondeterministic Turing machine and how is it different?
- 2. Consider a *computation tree* for an alternating Turing machine \mathcal{M} and an input string ω , and a configuration C in this tree.
 - (a) Suppose that C includes an *existential* state. What additional condition(s) must be satisfied in order for C to be an *accepting configuration*?
 - (b) Suppose, again, that C includes an *existential* state. What additional condition(s) must be satisfied in order for C to be a *rejecting configuration*?
 - (c) Suppose, once again, that C includes an *existential* state. What additional condition(s) must be satisfied in order for C to be a *looping configuration*?
 - (d) Suppose, instead, that C includes a *universal* configuration. What additional condition(s) must be satisfied in order for C to be an *accepting configuration*?
 - (e) Suppose, again, that C includes a *universal* state. What additional condition(s) must be satisfied in order for C to be a *rejecting configuration*?
 - (f) Suppose, once again, that C includes a *universal* state. What additional condition(s) must be satisfied in order for C to be a *looping configuration*?
- 3. Let \mathcal{M} be an alternating Turing machine with input alphabet Σ .
 - (a) What condition(s) must be satisfied in order for \mathcal{M} to *accept* a string $\omega \in \Sigma^*$?
 - (b) What condition(s) must be satisfied in order for \mathcal{M} to **reject** a string $\omega \in \Sigma^*$?
 - (c) What condition(s) must be satisfied in order for \mathcal{M} to *loop* on a string $\omega \in \Sigma^*$?
- 4. What does it mean for an alternating Turing machine \mathcal{M} , with input alphabet Σ , to *recognize* a language $L \subseteq \Sigma^*$?
- 5. What does it mean for an alternating Turing machine \mathcal{M} , with input alphabet Σ , to *decide* a language $L \subseteq \Sigma^*$?
- 6. Consider an alternating Turing machine \mathcal{M} , with input alphabet Σ , that decides a language $L \subseteq \Sigma^*$.
 - (a) How is the *time* used by \mathcal{M} on an input string $\omega \in \Sigma^*$ defined?
 - (b) Let $f : \mathbb{N} \to \mathbb{N}$ be a total function. Give the definition of $\mathsf{ATIME}(f(n))$.
 - (c) Give the definition of \mathcal{AP} . How is this complexity class related to complexity classes that have been considered before this?
- 7. Define $\Sigma_i \mathcal{P}$ and $\Pi_i \mathcal{P}$ for a positive integer *i*, as well as the complexity class \mathcal{PH} . How are these related? What is conjectured but not proved about \mathcal{PH} ?