Computer Science 511

Beyond $\mathcal{N P}$: Introduction to the Polynomial Hierarchy

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary
Lecture \#14

Goals for Today

- Presentation of The Polynomial Hierarchy - a hierarchy of complexity classes that is useful for comparing various computational problems (and associated decision problems) that are related to languages in $\mathcal{N} \mathcal{P}$, but appear to be more difficult
- Presentation of properties and conjectures about the complexity classes in this hierarchy - including some that will be related to more "natural" questions about computational complexity that will be considered later.

A Motivating Problem

- Recall the " k-Clique" problem, which concerns whether a given undirected graph has a clique of size at (at least) k, for a given positive integer k.
- This was used to define an $\mathcal{N} \mathcal{P}$-complete language, $L_{k \text {-Clique }}$.
- Consider a related question: For a given undirected graph G, and a given positive integer k, does the largest clique in G have size exactly k ?
- The language of instances of this problem is the same as the language, $L_{\text {Graph }}$ Bound , of instances for the " k-Clique" problem.
- The language $L_{\text {Exact- } k \text {-Clique }}$ of "Yes-instances", associated with this decision problem, does not seem to be in $\mathcal{N P}$. It does not seem to be in $\operatorname{co}-\mathcal{N} \mathcal{P}$, either.
- We will return to this language shortly...

Alternating Turing Machines

An Alternating Turing machine is another variant of a Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

such that $Q, \Sigma, \Gamma, q_{0}, q_{\text {accept }}, q_{\text {reject }}$, are as usually defined.

- As with a nondeterministic Turing machines, there can be zero, one or many transitions that can be made so that - if this is a one-tape Turing machine -

$$
\delta:\left(Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\}\right) \times \Gamma \rightarrow \mathcal{P}(Q \times \Gamma \times\{\mathrm{L}, \mathrm{R}\})
$$

- Both single-tape and multi-tape alternating Turing machines can be considered.

Alternating Turing Machines

- Every non-halting state is either an existential state (an \vee-state) or a universal state (a \wedge-state).
- As with nondeterministic Turing machine a computation of an alternating Turing machine M on an input string $\omega \in \Sigma^{\star}$ can be modelled as a computation tree - a rooted tree with the usual start configuration for M and ω at the root.

Alternating Turing Machines

Each configuration in this tree is either accepting, rejecting, or looping.

- If the configuration includes the accepting state $q_{\text {accept }}$ (so this is at a leaf in the computation tree) then this is an accepting configuration.
- If the configuration includes the rejecting state $q_{\text {reject }}$ (so that, once again, this is at a leaf in the computation tree) then this is a rejecting configuration.

Alternating Turing Machines

Otherwise, a recursive definition is used to determine whether a configuration is accepting, rejecting, or looping:

- If a configuration includes an existential state and some child of this in the computation tree is an accepting configuration, then this is an accepting configuration too. Otherwise this is a rejecting configuration if the subtree with this configuration as root is finite, and it is a looping configuration otherwise.
Special Case: It follows that if this configuration has no children, this is a rejecting configuration.

Alternating Turing Machines

- If a configuration includes a universal state and every child of this configuration is an accepting configuration then this is an accepting configuration too.
Otherwise this is a rejecting configuration if every child of this configuration is a rejecting configuation - so that the subtree of the computation tree with this node as root is finite - and it is a looping configuration otherwise.
Special Case: It follows that if this configuration has no children, then this is an accepting configuration.

Alternating Turing Machines

If M is an alternating Turing machine with input alphabet Σ and
$\omega \in \Sigma^{\star}$, then...

- \mathcal{M} accepts ω if the configuration at the root of the computation tree for M and ω is an accepting configuration;
- \mathcal{M} rejects ω if the configuration at the root of the computation tree for \mathcal{M} and ω is a rejecting configuration, and
- \mathcal{M} loops on ω otherwise.

Alternating Turing Machines

- If M is an alternating Turing machine with input alphabet Σ then (as usual) the language $L(\boldsymbol{M})$ of \boldsymbol{M} is the set of strings

$$
L(M)=\left\{\omega \in \Sigma^{\star} \mid M \text { accepts } \omega\right\}
$$

- M recognizes a language L if $L=L(M)$.

Alternating Turing Machines

- If \mathcal{M} 's input alphabet is Σ then \mathcal{M} decides a language $L \subseteq \Sigma^{\star}$ if the following three conditions are satisfied:
(a) \mathcal{M} accepts every string $\omega \in \Sigma^{\star}$ such that $\omega \in L$.
(b) \mathcal{M} rejects every string $\omega \in \Sigma^{\star}$ such that $\omega \notin L$.
(c) The computation tree for \mathcal{M} and ω is finite for every string $\omega \in \Sigma^{\star}$.
- From now on we will only consider alternating Turing machines that decide languages.

Alternating Turing Machines

- A deterministic one-tape Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

is easily "turned into" an alternating one-tape Turing machine, with the same language,

$$
\widehat{M}=\left(Q, \Sigma, \Gamma, \widehat{\delta}, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

by setting $\widehat{\delta}(q, \sigma)$ to be $\{\delta(q, \sigma)\}$ for every state $q \in Q \backslash\left\{q_{\text {accept }}, q_{\text {reject }}\right\}$ and every symbol $\sigma \in \Gamma$.

- A deterministic k-tape Turing machine is easily "turned into" an alternating k-tape Turing machine, with the same language, in essentially the same way.

Alternating Turing Machines

- A nondeterministic Turing machine

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)
$$

is easily "turned into" an alternating Turing machine, with the same language, by making no changes to M, at all and setting each of the states of M to be an existential state.

Alternating Turing Machines

- If $L \subseteq \Sigma^{\star}$, and

$$
M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{accept}}, q_{\mathrm{reject}}\right)
$$

is a nondeterministic Turing machine that decides L, then an alternating Turing machine

$$
\widehat{M}=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\mathrm{reject}}, q_{\mathrm{accept}}\right)
$$

that decides the complement L^{C} of L is obtained by switching the accepting and rejecting states - and setting each of the states of \widehat{M} to be a universal state.

Alternating Turing Machines

- The time used by an alternating Turing machine M, on an input string ω, is the depth of the computation tree for M and ω.
- If $f: \mathbb{N} \rightarrow \mathbb{N}$ is a total function, then $\operatorname{ATIME}(f(n))$ is the set of languages that are decidable by alternating Turing machines using time in $O(f(n))$ for every input string with length n.
- The relationships between nondeterministic Turing machines and alternating Turing machines, given, above, can be used to establish that

$$
\operatorname{TIME}(f(n)) \subseteq \operatorname{NTIME}(f(n)) \subseteq \operatorname{ATIME}(f(n))
$$

for every total function $f: \mathbb{N} \rightarrow \mathbb{N}$.

Alternating Turing Machines

Definition:

$$
\mathcal{A P}=\bigcup_{k \in \mathbb{N}} \operatorname{ATIME}\left(n^{k}\right)
$$

- It follows, by the above, that

$$
\mathcal{P} \subseteq \mathcal{N} \mathcal{P} \subseteq \mathcal{A P}
$$

Alternating Turing Machines

- The proof of Claim \#3, from Lecture \#8, can be modified to show that, for every function $f: \mathbb{N} \rightarrow \mathbb{N}$ and for every language $L \subseteq \Sigma^{\star}$ such that $L \in \operatorname{ATIME}(f)$, there exists an integer constant c (depending on L) such that $L \in \operatorname{TIME}\left(c^{f}\right)$. Thus

$$
\operatorname{ATIME}(f) \subseteq \bigcup_{c \in \mathbb{N}} \operatorname{TIME}\left(c^{f}\right)
$$

- This can be used to establish that

$$
\mathcal{A P} \subseteq E X P T I M E .
$$

Alternating Turing Machines

Now consider the following process, given a string $\mu \in \Sigma_{G}^{\star}$.

1. Deterministically check whether $\mu \in L_{\text {Graph }+ \text { Bound }}$ rejecting μ if this is not the case. Let $G=(V, E)$ be the undirected graph and let k be the positive integer that are encoded by μ, otherwise.
2. Reject μ if $k>|V|$. Otherwise - using existential states - nondeterministically "guess" a subset $C \subseteq V$ such that $|C|=k$. Then deterministically check whether C is a clique in G - rejecting μ, if this is not the case.
3. If $k=|V|$ then accept μ. Otherwise, use universal states to give a subset $\widehat{C} \subseteq Q$ such that $|\widehat{C}|=k+1$. Then deterministically check whether \widehat{C} is a clique in G rejecting μ if this is the case, and accepting μ, otherwise.

Alternating Turing Machines

- Since $L_{\text {Graph+Bound }} \in \mathcal{P}$ step \#1 can be carried out deterministically in polynomial time. Furthermore, if cliques (and other subsets of V) are encoded as described in Lecture \#12 then the deterministic part of steps \#2 and \#3 can also be carried out deterministically, using time that is at most polynomial in the length of the input string.
- Indeed, this algorithm can be implemented using an alternate Turing machine that uses time in the length of its input string - so that it decides a language $L \subseteq \Sigma_{G}^{\star}$ such that $L \in \mathcal{A P}$.

Alternating Turing Machines

- Since this algorithm only accepts when an input graph has a clique with size k but does not have a clique with size $k+1$, this Turing machine decides the language $L_{\text {Exact- } k \text {-Clique. }}$ Thus

$$
L_{\text {Exact- } k \text {-Clique }} \in \mathcal{A P} .
$$

Polynomial Hierarchy

Let i be an integer such that $i \geq 1$.
Definition: A Σ_{i}-Alternating Turing machine is an alternating Turing machine is an alternating Turing machine, with some input alphabet Σ^{\star}, such that

- The start state is an existential state, and
- There are at most $i-1$ alternations between existential states and universal states, down any branch of the computation tree for ω, for any input string $\omega \in \Sigma^{\star}$.
The definition of a $\boldsymbol{\Pi}_{\boldsymbol{i}}$-Alternating Turing machine is the same, except that the start state is a universal state instead of an existential state.

Polynomial Hierarchy

Now let i be a positive integer and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a total function.

Definition: $\Sigma_{i}-\operatorname{TIME}(f(n))$ is the set of languages $L \subseteq \Sigma^{\star}$ (for some input alphabet Σ) that can be decided using Σ_{i}-Alternating Turing machines using time in $O(f(n))$ in the worst case.

$$
\Sigma_{i} \mathcal{P}=\bigcup_{k \geq 1} \Sigma_{i}-\operatorname{TIME}\left(n^{k}\right)
$$

Polynomial Hierarchy

Once again, let i be a positive integer and let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a total function.

Definition: $\Pi_{i}-\operatorname{TIME}\left(f(n)\right.$) is the set of languages $L \subseteq \Sigma^{\star}$ (for some input alphabet Σ) that can be decided using Π_{i}-Alternating Turing machines using time in $O(f(n))$ in the worst case.

$$
\Pi_{i} \mathcal{P}=\bigcup_{k \geq 1} \Pi_{i}-\operatorname{TIME}\left(n^{k}\right) .
$$

Polynomial Hierarchy

Definition:

$$
\mathcal{P H}=\bigcup_{i \geq 1} \Sigma_{i} \mathcal{P} .
$$

- $\mathcal{P H}$ stands for Polynomial Hierarchy, and this is the standard name for the collection of complexity classes $\Sigma_{i} \mathcal{P}$ and $\Pi_{i} \mathcal{P}$, for $i \geq 1$, that have just been defined - along with $\mathcal{P H}$.
- Since $\Sigma_{i} \mathcal{P} \subseteq \mathcal{A P}$ for every integer $i \geq 1$,

$$
\mathcal{P H} \subseteq \mathcal{A P}
$$

as well.

Polynomial Hierarchy

Each of the following are easily proved:
(a) $\Sigma_{1} \mathcal{P}=\mathcal{N P}$ and $\Pi_{1} \mathcal{P}=\operatorname{co}-\mathcal{N} \mathcal{P}$.
(b) $\Pi_{i} \mathcal{P}=\operatorname{co}-\Sigma_{i} \mathcal{P}$ for every positive integer i.
(c) $\Sigma_{i} \mathcal{P} \cup \Pi_{i} \mathcal{P} \subseteq \Sigma_{i+1} \mathcal{P} \cap \Pi_{i+1} \mathcal{P}$ for every positive integer i.

Polynomial Hierarchy

- The following is believe but not proved.

Conjecture: $\mathcal{P H}$ is an infinite hierarchy. In particular, that

$$
\Sigma_{i} \mathcal{P} \subsetneq \Sigma_{i+1} \mathcal{P} \subsetneq \mathcal{P H}
$$

for every integer $i \geq 1$.

- Properties (b) and (c), on the previous slide can be used to show that this conjecture would imply that

$$
\Pi_{i} \mathcal{P} \subsetneq \Pi_{i+1} \mathcal{P} \subsetneq \mathcal{P H}
$$

as well.

Why Do We Care About the Polynomial Hierarchy?

Future lectures will consider complexity classes defined using two more "realistic" models:

- Computations using families of Boolean circuits
- Randomized computations

It turns out that the assumption that the Polynomial Hierarchy is an infinite hierarchy has implications concerning these complexity classes - and this is the reason why it is (still) included in this course.

