
Alternating Turing Machines Polynomial Hierarchy

Computer Science 511
Beyond NP : Introduction to the Polynomial Hierarchy

Instructor: Wayne Eberly

Department of Computer Science
University of Calgary

Lecture #14

Alternating Turing Machines Polynomial Hierarchy

Goals for Today

• Presentation of The Polynomial Hierarchy — a hierarchy

of complexity classes that is useful for comparing various

computational problems (and associated decision

problems) that are related to languages in NP , but appear

to be more difficult

• Presentation of properties and conjectures about the

complexity classes in this hierarchy — including some that

will be related to more “natural” questions about

computational complexity that will be considered later.

Alternating Turing Machines Polynomial Hierarchy

A Motivating Problem

• Recall the “k-Clique” problem, which concerns whether a

given undirected graph has a clique of size at (at least) k ,

for a given positive integer k .

• This was used to define an NP-complete language,

Lk -Clique.

• Consider a related question: For a given undirected

graph G, and a given positive integer k , does the largest

clique in G have size exactly k?

• The language of instances of this problem is the same as

the language, LGraph+Bound, of instances for the “k-Clique”

problem.

• The language LExact-k -Clique of “Yes-instances”, associated

with this decision problem, does not seem to be in NP . It

does not seem to be in co-NP , either.

• We will return to this language shortly...

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

An Alternating Turing machine is another variant of a Turing

machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

such that Q, Σ, Γ, q0, qaccept, qreject, are as usually defined.

• As with a nondeterministic Turing machines, there can be

zero, one or many transitions that can be made so that — if

this is a one-tape Turing machine —

δ : (Q \ {qaccept,qreject})× Γ → P(Q × Γ× {L, R})

• Both single-tape and multi-tape alternating Turing

machines can be considered.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• Every non-halting state is either an existential state (an

∨-state) or a universal state (a ∧-state).

• As with nondeterministic Turing machine a computation of

an alternating Turing machine M on an input string ω ∈ Σ⋆

can be modelled as a computation tree — a rooted tree

with the usual start configuration for M and ω at the root.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

Each configuration in this tree is either accepting, rejecting, or

looping.

• If the configuration includes the accepting state qaccept (so

this is at a leaf in the computation tree) then this is an

accepting configuration.

• If the configuration includes the rejecting state qreject (so

that, once again, this is at a leaf in the computation tree)

then this is a rejecting configuration.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

Otherwise, a recursive definition is used to determine whether a

configuration is accepting, rejecting, or looping:

• If a configuration includes an existential state and some

child of this in the computation tree is an accepting

configuration, then this is an accepting configuration too.

Otherwise this is a rejecting configuration if the subtree

with this configuration as root is finite, and it is a looping

configuration otherwise.

Special Case: It follows that if this configuration has no

children, this is a rejecting configuration.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• If a configuration includes a universal state and every

child of this configuration is an accepting configuration

then this is an accepting configuration too.

Otherwise this is a rejecting configuration if every child of

this configuration is a rejecting configuation — so that the

subtree of the computation tree with this node as root is

finite — and it is a looping configuration otherwise.

Special Case: It follows that if this configuration has no

children, then this is an accepting configuration.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

If M is an alternating Turing machine with input alphabet Σ and

ω ∈ Σ⋆, then...

• M accepts ω if the configuration at the root of the

computation tree for M and ω is an accepting configuration;

• M rejects ω if the configuration at the root of the

computation tree for M and ω is a rejecting configuration,

and

• M loops on ω otherwise.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• If M is an alternating Turing machine with input alphabet Σ
then (as usual) the language L(M) of M is the set of

strings

L(M) = {ω ∈ Σ⋆ | M accepts ω}

• M recognizes a language L if L = L(M).

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• If M’s input alphabet is Σ then M decides a language

L ⊆ Σ⋆ if the following three conditions are satisfied:

(a) M accepts every string ω ∈ Σ⋆ such that ω ∈ L.

(b) M rejects every string ω ∈ Σ⋆ such that ω /∈ L.

(c) The computation tree for M and ω is finite for every string
ω ∈ Σ⋆.

• From now on we will only consider alternating Turing

machines that decide languages.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• A deterministic one-tape Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

is easily “turned into” an alternating one-tape Turing

machine, with the same language,

M̂ = (Q,Σ, Γ, δ̂,q0,qaccept,qreject)

by setting δ̂(q, σ) to be {δ(q, σ)} for every state

q ∈ Q \ {qaccept,qreject} and every symbol σ ∈ Γ.

• A deterministic k-tape Turing machine is easily “turned

into” an alternating k-tape Turing machine, with the same

language, in essentially the same way.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• A nondeterministic Turing machine

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

is easily “turned into” an alternating Turing machine, with

the same language, by making no changes to M, at all —

and setting each of the states of M to be an existential

state.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• If L ⊆ Σ⋆, and

M = (Q,Σ, Γ, δ,q0,qaccept,qreject)

is a nondeterministic Turing machine that decides L, then

an alternating Turing machine

M̂ = (Q,Σ, Γ, δ,q0,qreject,qaccept)

that decides the complement LC of L is obtained by

switching the accepting and rejecting states — and setting

each of the states of M̂ to be a universal state.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• The time used by an alternating Turing machine M, on an

input string ω, is the depth of the computation tree for M

and ω.

• If f : N → N is a total function, then ATIME(f (n)) is the set

of languages that are decidable by alternating Turing

machines using time in O(f (n)) for every input string with

length n.

• The relationships between nondeterministic Turing

machines and alternating Turing machines, given, above,

can be used to establish that

TIME(f (n)) ⊆ NTIME(f (n)) ⊆ ATIME(f (n))

for every total function f : N → N.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

Definition:

AP =
⋃

k∈N

ATIME(nk).

• It follows, by the above, that

P ⊆ NP ⊆ AP .

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• The proof of Claim #3, from Lecture #8, can be modified to

show that, for every function f : N → N and for every

language L ⊆ Σ⋆ such that L ∈ ATIME(f), there exists an

integer constant c (depending on L) such that

L ∈ TIME(cf). Thus

ATIME(f) ⊆
⋃

c∈N

TIME(cf).

• This can be used to establish that

AP ⊆ EXPTIME.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

Now consider the following process, given a string µ ∈ Σ⋆

G.

1. Deterministically check whether µ ∈ LGraph+Bound —

rejecting µ if this is not the case. Let G = (V ,E) be the

undirected graph and let k be the positive integer that are

encoded by µ, otherwise.

2. Reject µ if k > |V |. Otherwise — using existential states

— nondeterministically “guess” a subset C ⊆ V such that

|C| = k . Then deterministically check whether C is a clique

in G — rejecting µ, if this is not the case.

3. If k = |V | then accept µ. Otherwise, use universal states

to give a subset Ĉ ⊆ Q such that |Ĉ| = k + 1. Then

deterministically check whether Ĉ is a clique in G —

rejecting µ if this is the case, and accepting µ, otherwise.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• Since LGraph+Bound ∈ P step #1 can be carried out

deterministically in polynomial time. Furthermore, if cliques

(and other subsets of V) are encoded as described in

Lecture #12 then the deterministic part of steps #2 and #3

can also be carried out deterministically, using time that is

at most polynomial in the length of the input string.

• Indeed, this algorithm can be implemented using an

alternate Turing machine that uses time in the length of its

input string — so that it decides a language L ⊆ Σ⋆

G such

that L ∈ AP.

Alternating Turing Machines Polynomial Hierarchy

Alternating Turing Machines

• Since this algorithm only accepts when an input graph has

a clique with size k but does not have a clique with

size k + 1, this Turing machine decides the language

LExact-k -Clique. Thus

LExact-k -Clique ∈ AP.

Alternating Turing Machines Polynomial Hierarchy

Polynomial Hierarchy

Let i be an integer such that i ≥ 1.

Definition: A Σi -Alternating Turing machine is an alternating

Turing machine is an alternating Turing machine, with some

input alphabet Σ⋆, such that

• The start state is an existential state, and

• There are at most i − 1 alternations between existential

states and universal states, down any branch of the

computation tree for ω, for any input string ω ∈ Σ⋆.

The definition of a Πi -Alternating Turing machine is the

same, except that the start state is a universal state instead of

an existential state.

Alternating Turing Machines Polynomial Hierarchy

Polynomial Hierarchy

Now let i be a positive integer and let f : N → N be a total

function.

Definition: Σi -TIME(f (n)) is the set of languages L ⊆ Σ⋆ (for

some input alphabet Σ) that can be decided using

Σi -Alternating Turing machines using time in O(f (n)) in the

worst case.

ΣiP =
⋃

k≥1

Σi -TIME(nk).

Alternating Turing Machines Polynomial Hierarchy

Polynomial Hierarchy

Once again, let i be a positive integer and let f : N → N be a

total function.

Definition: Πi -TIME(f (n)) is the set of languages L ⊆ Σ⋆ (for

some input alphabet Σ) that can be decided using

Πi -Alternating Turing machines using time in O(f (n)) in the

worst case.

ΠiP =
⋃

k≥1

Πi -TIME(nk).

Alternating Turing Machines Polynomial Hierarchy

Polynomial Hierarchy

Definition:

PH =
⋃

i≥1

ΣiP.

• PH stands for Polynomial Hierarchy, and this is the

standard name for the collection of complexity classes ΣiP
and ΠiP, for i ≥ 1, that have just been defined — along

with PH.

• Since ΣiP ⊆ AP for every integer i ≥ 1,

PH ⊆ AP

as well.

Alternating Turing Machines Polynomial Hierarchy

Polynomial Hierarchy

Each of the following are easily proved:

(a) Σ1P = NP and Π1P = co-NP .

(b) ΠiP = co-ΣiP for every positive integer i .

(c) ΣiP ∪ ΠiP ⊆ Σi+1P ∩ Πi+1P for every positive integer i .

Alternating Turing Machines Polynomial Hierarchy

Polynomial Hierarchy

• The following is believe but not proved.

Conjecture: PH is an infinite hierarchy. In particular, that

ΣiP (Σi+1P (PH

for every integer i ≥ 1.

• Properties (b) and (c), on the previous slide can be used to

show that this conjecture would imply that

ΠiP (Πi+1P (PH

as well.

Alternating Turing Machines Polynomial Hierarchy

Why Do We Care About

the Polynomial Hierarchy?

Future lectures will consider complexity classes defined using

two more “realistic” models:

• Computations using families of Boolean circuits

• Randomized computations

It turns out that the assumption that the Polynomial Hierarchy is

an infinite hierarchy has implications concerning these

complexity classes — and this is the reason why it is (still)

included in this course.

	Alternating Turing Machines
	Polynomial Hierarchy

