Lecture #14: Introduction to the Polynomial Hierarchy Lecture Presentation

Getting "Close" to Being Satisfied

Once again, consider a Boolean formula \mathcal{F} , defined over the set of Boolean variables $\mathcal{V} = \{x_0, x_1, x_2, ...\}$, such that \mathcal{F} is in *conjunctive normal form*. Then

$$\mathcal{F} = (C_1 \wedge C_2 \wedge \dots \wedge C_s)$$

for a positive integer s, where

$$C_i = (\ell_{i,1} \lor \ell_{i,2} \lor \cdots \lor \ell_{i,m_i})$$

where m_i is a positive integer, for every integer i such that $1 \le i \le s$ — and where $\ell_{i,j}$ is a *literal* (either x_h or $\neg x_h$, for some non-negative integer h) for all i and j such that $1 \le i \le s$ and $1 \le j \le m_i$.

In some situations, we might be interested in *satisfying as many clauses of a Boolean formula* \mathcal{F} *, in conjunctive normal form, as possible.* This may suggest the following decision problem.

Satisfying Clauses

Instance: A Boolean formula \mathcal{F} , in conjunctive normal form, with s clauses for some positive integer s, and a non-negative integer k

Question: Are the following conditions both satisfied?

- (a) There exists a partial truth assignment $\varphi : \mathcal{V} \to \{T, F\}$ such that $\varphi(C_i)$ is defined, for every integer *i* such that $1 \leq i \leq s$, and such that at least *k* of $\varphi(C_1), \varphi(C_2), \ldots, \varphi(C_k)$ are T.
- (b) There *does not* exist a partial truth assignment $\psi : \mathcal{V} \to \{T, F\}$ such that $\psi(C_i)$ is defined, for every integer *i* such that $1 \le i \le s$, and such that at least k + 1 of $\psi(C_1), \psi(C_2), \dots, \psi(C_k)$ are T.

Recall that Boolean formulas can be encoded as strings over the alphabet Σ_F , introduced in Lecture #11, in a straightforward way. Since Σ_F includes each of the symbols $0, 1, 2, \ldots, 9$, a non-negative integer k can be encoded, as a string in Σ_F^* , using its unpadded decimal representation

Now let $\widehat{\Sigma}_F = \Sigma_F \cup \{(, , ,)\}$. An instance of the above decision problem, including a Boolean formula \mathcal{F} and a non-negative integer k, can therefore be encoded as a string in $\widehat{\Sigma}_F^{\star}$ consisting of the encoding of \mathcal{F} , and the decimal representation of k, enclosed by brackets and separated by a comma.

Let $L_{\text{Formula+Number}} \subseteq \widehat{\Sigma}^{\star}$ be the language of encodings of *instances* of the "Satisfying Clauses" problem, given above, and let $L_{\text{ClausesSatisfied}} \subseteq L_{\text{Formula+Number}}$ be the language of encodings of Yes-instances of this decision problem.

Proof That $L_{Formula+Number} \in \mathcal{P}$:

Proof That $L_{ ext{ClausesSatisfied}} \in \Sigma_2 \mathcal{P}$:

Proof That $L_{ ext{ClausesSatisfied}} \in \Pi_2 \mathcal{P}$:

Proof That $\Pi_i \mathcal{P} = co$ - $\Sigma_i \mathcal{P}$ for Every Positive Integer i: