Lecture \#14: Introduction to the Polynomial Hierarchy Lecture Presentation

Getting "Close" to Being Satisfied

Once again, consider a Boolean formula \mathcal{F}, defined over the set of Boolean variables $\mathcal{V}=$ $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$, such that \mathcal{F} is in conjunctive normal form. Then

$$
\mathcal{F}=\left(C_{1} \wedge C_{2} \wedge \cdots \wedge C_{s}\right)
$$

for a positive integer s, where

$$
C_{i}=\left(\ell_{i, 1} \vee \ell_{i, 2} \vee \cdots \vee \ell_{i, m_{i}}\right)
$$

where m_{i} is a positive integer, for every integer i such that $1 \leq i \leq s$ - and where $\ell_{i, j}$ is a literal (either x_{h} or $\neg x_{h}$, for some non-negative integer h) for all i and j such that $1 \leq i \leq s$ and $1 \leq j \leq m_{i}$.

In some situations, we might be interested in satisfying as many clauses of a Boolean formula \mathcal{F}, in conjunctive normal form, as possible. This may suggest the following decision problem.

Satisfying Clauses

Instance: A Boolean formula \mathcal{F}, in conjunctive normal form, with s clauses for some positive integer s, and a non-negative integer k
Question: Are the following conditions both satisfied?
(a) There exists a partial truth assignment $\varphi: \mathcal{V} \rightarrow\{\mathrm{T}, \mathrm{F}\}$ such that $\varphi\left(C_{i}\right)$ is defined, for every integer i such that $1 \leq i \leq s$, and such that at least k of $\varphi\left(C_{1}\right), \varphi\left(C_{2}\right), \ldots, \varphi\left(C_{k}\right)$ are T .
(b) There does not exist a partial truth assignment $\psi: \mathcal{V} \rightarrow\{\mathrm{T}, \mathrm{F}\}$ such that $\psi\left(C_{i}\right)$ is defined, for every integer i such that $1 \leq i \leq s$, and such that at least $k+1$ of $\psi\left(C_{1}\right), \psi\left(C_{2}\right), \ldots, \psi\left(C_{k}\right)$ are T.

Recall that Boolean formulas can be encoded as strings over the alphabet Σ_{F}, introduced in Lecture \#11, in a straightforward way. Since Σ_{F} includes each of the symbols $0,1,2, \ldots, 9$, a non-negative integer k can be encoded, as a string in Σ_{F}^{\star}, using its unpadded decimal representation
Now let $\widehat{\Sigma}_{F}=\Sigma_{F} \cup\{(,,)$,$\} . An instance of the above decision problem, including a Boolean$ formula \mathcal{F} and a non-negative integer k, can therefore be encoded as a string in $\widehat{\Sigma}_{F}^{\star}$ consisting of the encoding of \mathcal{F}, and the decimal representation of k, enclosed by brackets and separated by a comma.
Let $L_{\text {Formula+Number }} \subseteq \widehat{\Sigma}^{\star}$ be the language of encodings of instances of the "Satisfying Clauses" problem, given above, and let $L_{\text {ClausesSatisfied }} \subseteq L_{\text {Formula+Number }}$ be the language of encodings of Yes-instances of this decision problem.

Proof That $L_{\text {Formula }}+$ Number $\in \mathcal{P}$:

Proof That $L_{\text {ClausesSatisfied }} \in \boldsymbol{\Sigma}_{\mathbf{2}} \mathcal{P}$:

Proof That $L_{\text {ClausesSatisfied }} \in \Pi_{2} \mathcal{P}$:

Proof That $\Pi_{i} \mathcal{P}=\operatorname{co}-\Sigma_{i} \mathcal{P}$ for Every Positive Integer i :

