
CPSC 511 — Winter, 2024

Assignment #2 — NP-Completeness

About This Assignment

This assignment is due by 11:59 pm on Friday, February 16. CPSC 511 students may either

complete this assignment or individually, or working in groups of two students.

The assignment should be submitted as a single PDF file, using the D2L dropbox for this

assignment. While repeated submissions are allowed, only the most recent submission will be

maintained and marked.

Problems To Be Solved

Cormen, Leiserson and Stein note the following in their text, “Introduction to Algorithms”: ‘Map-

makers try to use as few colours as possible when colouring countries on a map, as long as

no two countries that share a border have the same colour.” A map can be abstractly modelled

as an undirected graph, where countries are represented by vertices and there is an edge be-

tween two vertices that have a common border. This motivates the graph colouring problem

of finding a way to assign colours to the vertices in a graph, using as few colours as possible, in

such a way that no pair of vertices with an edge between them receive the same colour.

We say that an undirected graph is k-colourable if this is the case when at most k colours are

used. Furthermore if a graph G = (V,E) is k-colourable, then any assignment of (at most) k

colours to the vertices that satisfies the above constraint is called a k-colouring of G.

With that noted, considering the following decision problem.

Graph 3-Colourability

Instance: An undirected graph G = (V,E)
Question: Is G 3-colourable?
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This can be used to produce language of interest using the alphabet ΣG and the encodings

of undirected graphs described in Lecture #12: Let LGraph ⊆ Σ⋆
G be the set of (well-formed)

encodings of undirected graphs, that is, the set of encodings of instances of the above problem.

Let L3-Colurable ⊆ LGraph be the set of encodings of “Yes-instances” of this problem, that is, the

set of encodings of undirected graphs that are 3-colourable.

Using information from Lecture #12, one can see that LGraph ∈ P. This fact can be used when

completing this assignment, without proving it.

1. Prove that L3-Colurable ∈ NP.

It is not necessary to describe a Turing machine in order to do this: Instead, an algorithm

can be given as pseudocode (when one is needed). After the correctness and efficiency

of this high-level algorithm have been established, details can be added (as needed) to

establish that a Turing machine, that would be needed to establish this claim, does exist.

Now consider a Boolean formula F , including a finite number of the variables x0, x1, x2, . . . ,

that is in 3-conjunctive normal form. Suppose, in particular, that

F = (ℓ1,1 ∨ ℓ1,2 ∨ ℓ1,3) ∧ (ℓ2,1 ∨ ℓ2,2 ∨ ℓ2,3) ∧ · · · ∧ (ℓk,1 ∨ ℓk,2 ∨ ℓk,3)

for some positive integer k.

Consider an undirected graph GF = (VF , EF ) that is as follows. (For now, vertices will be

given different names than v0, v1, v2, . . . — but these vertices can be renamed later.)

• VF includes three “special” vertices, “true”, “false”, and “neither”, and EF includes all

three edges (true, false), (true, neither), and (false, neither) — so that these three spe-

cial vertices form a triangle in the graph.

• For every Boolean variable xh such that either xh or ¬xh (or both) is a literal in F , VF

also includes a pair of vertices, “xh” and “¬xh”. EF also includes all three of the edges

(xh, neither), (¬xh, neither), and (xh,¬xh), where “neither” is the special vertex given

above.

Note that, if we have a 3-colouring, then we can name the three colours anything we want to,

and the three special vertices must have different colours. So, we could name the colour given

to neither “N”, we could name the colour given to true “T”, and we could name the colour given

to false “F”.

Additional vertices and edges will be added to this graph. However, if you think about it, you

should see that every 3-colouring of GF must already correspond to some (not necessarily

satisfying) truth assignment for F .
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Suppose now that we include five more vertices to VF for each one of the k clauses in F , and

also add some edges to EF . In particular, Suppose that we create a subgraph looking like this

for each clause:

true

x

y

z

In particular, for the ith clause (ℓi,1 ∨ ℓi,2 ∨ ℓi,3), the vertex x shown here is the same as the

vertex ℓi,1, the vertex y is the same as the vertex ℓi,2, and the vertex z shown here is the same

as the vertex ℓi,3 — each of which is one of the vertices “xh” or “¬xh” that has already been

added to VF above. The vertex labelled “true” here is the special vertex “true” that has been

added above, as well. The five new vertices, for this clause, are the five unnamed ones in the

picture.

The set EF should be increased (only) to include the edges in the above picture for each one

of the clauses in F . The description of the graph GF = (VF , EF ) is now complete.

2. Prove that if F is satisfiable then GF is 3-colourable.

3. Prove that if GF is 3-colourable then F is satisfiable.

4. Prove that L3-Colurable is NP-hard. Algorithms may be specified as in previous questions,

with their analyses given in the same way and at the same level of detail.

If you have successfully answered the above questions then you have completed a proof that

L3-Colurable is NP-complete.
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