

Rep 5
Conceptual Representation Software

RepScript
Manual for
Version 1.0

March 2010

Copyright © 2010, Brian R Gaines and Mildred L G Shaw
Centre for Person-Computer Studies

3635 Ocean View, Cobble Hill, BC V0R 1L1, Canada
mailto:cpcs@shaw.ca

http://repgrid.com

Contents
1 Introduction 1-1

1.1 Editing, executing and debugging RepScript scripts 1-1
1.2 Garbage collection 1-1

2 Basic features of the RepScript programming language 2-1
2.1 Data Types 2-1
2.2 Literals 2-1
2.3 Variables 2-1
2.4 Arrays 2-1
2.5 Constants 2-2
2.6 Operators 2-2
2.7 Expressions and assignments 2-2
2.8 Comments 2-2

3 Flow of control 3-1
3.1 If...Then...Else 3-1
3.2 For...Next 3-1
3.3 Do...Loop 3-1
3.4 While...Wend 3-2
3.5 Select Case 3-2

4 User-defined functions, subroutines, modules, classes and objects 4-1
4.1 Functions 4-1
4.2 Subroutines 4-1
4.3 Classes and objects 4-1
4.4 Modules, namespaces 4-2

5 Pre-defined functions 5-1
5.1 Constants 5-1
5.1 Bitwise functions 5-1
5.2 Arithmetic functions 5-1
5.3 Arithmetic rounding functions 5-1
5.4 Trignometric functions 5-2
5.5 Strings formatted from numbers 5-2
5.6 String-numeric conversion functions 5-3
5.7 String modify functions 5-3
5.8 String field and array function 5-3
5.9 Other string functions 5-4
5.10 Array functions 5-5
5.11 Color functions 5-5
5.12 Time functions 5-6
5.13 Random functions 5-6
5.14 Popup menu functions 5-6
5.15 Data type function 5-6
5.16 Matrix operations—transpose, multiply, eigernvalues 5-6

6 Script specifications, calls, and global hash and vector stores 6-1
6.1 Script specifications 6-1
6.2 Script calls 6-1

6.3 Access to script state and name 6-2
6.4 Script execution 6-2
6.5 Hash table functions 6-2
6.6 Vector functions 6-3

7 Stream and text window functions 7-1
7.1 Stream write functions 7-1
7.2 Text window write functions 7-1
7.3 Text window create and access functions 7-2
7.4 Text window title functions 7-2
7.5 Text window state functions 7-2

8 System functions 8-1
8.1 Access to system parameters 8-1
8.2 File functions 8-1
8.3 Time functions 8-2
8.4 Sound functions 8-2
8.5 Alert and confirm dialog windows 8-2

9 XML functions 9-1
9.1 XML document open and create functions 9-1
9.2 XML document navigation functions 9-1
9.3 XML document data access functions 9-1
9.4 XML document data creation functions 9-2

10 Grid functions 10-1
10.1 Opening a grid 10-1
10.2 Grid data Items 10-1
10.3 Settable grid data Items 10-2
10.4 Grid dlements 10-3
10.5 Grid constructs 10-3
10.6 Grid items 10-3
10.7 Grid values 10-3
10.8 Grid selection 10-4
10.9 Grid matches 10-4
10.10 Grid analysis 10-5

11 Data structures used in grid functions 11-1
11.1 Reserved names for items in a grid 11-1
11.2 Element specification in a hash store 11-1
11.3 Construct specification in a hash store 11-1
11.4 Variables used in grids 11-1
11.5 Display parameters 11-2
11.6 Focus parameters 11-3
11.7 Compare parameters 11-3
11.8 PrinGrid parameters 11-4
11.9 Matches parameters 11-5
11.10 Crossplot parameters 11-5
11.11 Statistics parameters 11-5
11.12 Style parameters 11-6
11.13 Selection and weight specification 11-6

12 RepGrid library 12-1
12.1 Script window management 12-1
12.2 Script window functions 12-1
12.3 Script calls supporting interaction 12-1

13 RepSocio library 13-1
13.1 Accessing a specific grid 13-1
13.2 Accessing the text fields in the scripts pane 13-1
13.3 Accessing the list of grids 13-1
13.4 Controlling and accessing Socio analyses 13-2

14 RepServe library 14-1
14.1 Getting client request 14-1
14.2 Sending server response 14-1
14.3 WebGrid functions 14-1
14.4 WebNet functions 14-1
14.5 Server log window functions 14-1
14.6 System function extensions 14-2

15 Net functions 15-1
15.1 Net management 15-1
15.2 Net data Items 15-1
15.3 Settable net data Items 15-1
15.4 Net nodes 15-2
15.5 Net states 15-2
15.6 Net lines 15-2
15.7 Script interaction in RepNet 15-2
15.8 Node and line specifications in a hash store 15-3

1-1

1 Introduction
Rep 5 was designed to have an open architecture in which major parts of its operation are
programmed in user-accessible scripts which can be extended to customize its major components
such as RepGrid, RepNet and RepServe and enhance their functionality. Scripts are written in the
RepScript which is an object-oriented modern programming language similar in many respects to
Microsoft’s widely used Visual Basic for Applications (VBA). It is a heavily extended version of
REAL Software’s RBScript which is itself based on the REALbasic language. Those developing
RepScript programs may find it useful to download the REALbasic User’s Guide and Language
Reference (see RBScript section) from REAL Software’s web site:

http://www.realsoftware.com/download/
RepScript has a common functionality across all its applications enhanced by specialist
functionality for each of the environments in which it operates, RepGrid, RepNet or RepServe.
This manual describes both the common and specialist functionality. It assumes that readers are
already experienced in programming in basic-like object-oriented languages.

1.1 Editing, executing and debugging RepScript scripts
RepScript scripts are text files with the extension .txt in ASCII or UTF-8 and may be edited in
any text editor that supports these encodings.
Rep 5 provides a suitable text editor when a new text file is created from within Rep 5 or a text
file is opened in Rep 5. The Rep 5 text editor allows a RepScript opened in it to be executed
using the “Execute” command at the bottom of the “Edit” menu, or CMD-E.
RepScript traps syntax errors when a script is first executed, and runtime errors while it is
executing. It reports these in terms of the nature of the error, the name of the script, the line
number of the code producing the error, and the code itself.
Errors are normally output to the “Log” window, but may be redirected to another location, e.g.
the RepServe script environment shows them in an HTML error page sent to the web client that
invokes the script, and the RepGrid script environment shows them in the “Script” panel.
Also useful in debugging scripts is the command:

Print stringExpression
which outputs the value of the string expression to the log window.

1.2 Garbage collection
Garbage collection in RepScript is automatic based on reference counting. RepScript keeps track
of the number of variables that reference a particular data item and when the count reaches zero,
that is the item goes out of scope, the data item is marked as garbage and collected when space is
needed. This makes it important to manage cyclic references between objects that may prevent
garbage collection and create a memory leak by setting such references to nil when the structure
created is to be deleted.

2-1

2 Basic features of the RepScript programming language

2.1 Data Types
RepScript supports the following data types:
• String—of UTF8 characters;
• Boolean, integer—32bits;
• Single—32bits;
• Double—64 bits;
• Color—32 bits intepreted as three 8 bit fields for RGB;
• Object—datatype defined through a class;
• Variant—a generic datatype which may hold any of the previous data types.

2.2 Literals
Numeric literals have the form: 123, -99, 0.573, 1.45E6
Numeric literals may also be expressed to a different base:
• &b10000101 (binary);
• &o3427 (octal);
• &h5fa8b (hex);
Boolean literals have the form: false, true
String literals have the form: “abcdef”
Color literals have the form: &c88aabc (RGB in hex)
Array literals have the form: Array(1,2,7) or Array(“cat”,”dog”)
The literal for a non-existent object is: nil

2.3 Variables
Variables name are case-insensitive and can be any string of letters, numbers or underlines not
commencing with a number.
All variable must be declared through a Dim statement specifying their name and type, e.g.

Dim i, j, k As Integer, x, y As Double, b As Boolean
Variables are normally initialized to zero, null string, false or nil as appropriate but may be
initialized to a specified value when declared, e.g.

Dim i As Integer = 10
Dim x As Single = i + 2.7

initializes x to 12.7.

2.4 Arrays
Array variables are zero-based, may be multidimensional and are specified by parentheses
specifying the upper bound of each dimension followed by their type, e.g.

Dim a(3) As Integer, w(12,12) As Double, bb(10,8,8) As Boolean
Empty arrays may be defined with -1 as the upper bound, or by empty parentheses, e.g.

2-2

Dim b(-1) As Integer, x() As Single
Arrays may be initialized using the Array function, e.g.

Dim a(3) As Integer=Array(4,7,9,2)
Arrays may re-dimensioned dynamically by the redim statement, e.g.

Redim a(10)
Redim w(8,12)

The function UBound may be used to find the dimension of an array, e.g.
UBound(a) or a.UBound will return 10

For multidimensional arrays UBound return the first dimension, and may be used with an
argument to specify a specific dimension, e.g.

UBound(w) or UBound(w,1) will return 8
UBound(w,2) will return 12

For any array UBound with a second argument of -1 will return the number of dimensions, e.g.
UBound(a,-1) will return 1
UBound(w,-1) will return 2

2.5 Constants
Constants can be declared as: Const name = literal, e.g.:

Const pi = 3.141352673723846
Const MachineName = ”JoesComputer”
Const red = &cff0000

2.6 Operators
Arithmetic operators, numeric type to numeric type: +, -, *, /
Arithmetic operators, integer to integer: \, Mod (integer divide, remainder)
Comparison operators, all types to boolean: <, =, >, <=, >=, <>
Logical operators between boolean expressions: And, Or, Not (shortcut operators)
String operators: + (concatenation)

2.7 Expressions and assignments
Expressions are well-formed combinations of literals, variables, functions and operators, such as
a + 7.234 / sin(0.89).
Assignments have the form: variable = expression
Type conversion between numeric types is automatic.
Expressions of any type may be assigned to a variable of type variant.
Type conversion from a variant to any other type is automatic.

2.8 Comments
Program lines commencing are treated as comments if they commence with: ' or //

3-1

3 Flow of control
RepScript supports the normal flow of control commands expected in a programming language.

3.1 If...Then...Else
The general form of the “If...Then...Else” construct is:

If boolean expression Then
program statements

ElseIf boolean expression Then
program statements

Else
program statements

End
where the ElseIf and Else clauses may be omitted and there can be as many ElseIf clauses as
required.
If one-line program statements are adequate then the “If...Then...Else” construct can be one-line:

If boolean expression Then statement
If boolean expression Then statement Else statement

3.2 For...Next
The general form of the “For...Next” construct is:

For counter variable = start value To | DownTo end expression [Step step value]
program statements
[Continue]
[Exit]
program statements

Next
where the counter variable can be of type Integer, Single or Double. If the Step clause is absent
the value is taken to be 1.
The counter variable is initialized to the start value and if it is not greater than the end expression
the program statements are executed until the Next statement. The counter variable is then
incremented (To) or decremented (DownTo) by the step expression and if it is not greater than
the end expression the program statements are executed, and so on.
The optional Continue statement skips directly to the Next statement. The optional Exit
statement skips to the statement following the Next statement.

3.3 Do...Loop
The general form of the “Do...Loop” construct is:

Do [Until boolean expression]
program statements
[Continue]

3-2

[Exit]
program statements

Loop [Until boolean expression]
The Do...Loop statement continues to execute statements repeatedly until one of the optional
boolean expressions is True or an optional Exit statement within the loop is executed.
The optional Continue statement skips directly to the Loop statement. The optional Exit
statement skips to the statement following the Loop statement.

3.4 While...Wend
The general form of the “While...Wend” construct is:

While boolean expression
program statements
[Continue]
[Exit]
program statements

Wend
If the boolean expression evaluates to True, all statements are executed until the Wend statement
is reached. If the boolean expression still evaluates to True the process is repeated. If False, then
execution continues with the statement following the Wend statement.
The optional Continue statement skips directly to the Wend statement. The optional Exit
statement skips to the statement following the Wend statement.

3.5 Select Case
The general form of the “Select Case” construct is:

Select Case testExpression
[Case expression-n

program statements-n]
[Else

program statements-else]
End

Where testExpression is any expression that evaluates to a value. The expression can be of any
data type or an object.
Where expression-n is any expression or comma-separated list of expressions. You can use a
function that evaluates to the data type of testExpression. The expression can be a single value, a
comma-delimited list of values, a function that returns a value, a range of values specified with
the 'To" keyword, an expression that uses the Is keyword to do an equality or inequality test, or
an expression that uses IsA to determine the data type of an object.
Where program statements-n are executed if expression-n is true.
Where program statements-else are executed if none of the expression-n’s are true.

4-1

4 User-defined functions, subroutines, modules, classes and objects

4.1 Functions
RepScript supports subroutines and functions with arguments specified by type and passed by
value or by reference. Variable numbers of arguments of the same type can be passed and are
accessed as a parameter array. Subroutines and functions may be called before they are defined.
The Call statement allows a function to be called as if it were a subroutine.
The general form of a function definition is:

Function(parameter list) As datatype
program statements
[Return expression]
[Exit]
program statements

End Function
Where the parameter list has the form:

Name Type, Name Type,
specifying each parameter by name and by type. Array parameters are indication by a pair of
opening and closing parentheses. Multi-dimensional arrays have commas within the parentheses
to indicate the number of dimensions.
The ByRef keyword in front of a parameter name indicates that the parameter is passed by
reference and hence the value of the calling variable may be changed.
The ParamArray keyword in front of the last or only parameter name indicates that the parameter
will accept any number of values of the type specified and make them available as an array.
A Return expression statement exits the function, returning the value of the expression.
If there is no Return statement the default value of the datatype of the functions is returned. An
Exit statement returns immediately with the default value.
Variables defined in Dim statements within the function are local to the function.

4.2 Subroutines
The general form of a subroutine definition is:

Sub(argument list)
program statements
[Exit]
program statements

End Sub
The same considerations apply as for functions except that there is no value returned.

4.3 Classes and objects
A set of constants, variables, functions and subroutines may be encapsulated in a class which
acts as a templet for objects instantiating the class. In essence, each class defines a new data type.

4-2

Classes may inherit from one another. The functions and subroutines within a class are usually
termed its methods.
The general form of a class definition is:

Class classname
[Inherits classname]
constant, variable, function and subroutine definitions

End Class
A variable can be declared as having the type of a class in a Dim statement:

Dim variable As classname
The New statement can be used to create an object instantiating a class:

New classname
A class can have Constructor subroutines/methods that are called by a New statement when the
classname specification has the form of a subroutine call with an argument signature that
matches that of the Constructor subroutine.
A class can have a Destructor subroutine/method that is called automatically when an object of
the type of the class goes out of scope.

4.4 Modules, namespaces
Modules may be used to encapsulate sections of a program within a namespace such that all
constants, variables, functions, subroutines and classes defined within the module have to be
referenced with the name of the module followed by a period and the name of the construct
referenced.
The general form of a module definition is:

Module name
constant, variable, functions, subroutine and class definitions

End Module

5-1

5 Pre-defined functions

5.1 Constants
BOM As String—UTF8 BOM
CR As String—CR
CRLF As String—CRLF
EOL As String—end-of-line character for operating system under which Rep 5 is operating
REVFLAG As Integer—flag used in construct number to indicate it is reversed
REVMSK As Integer—bit-pattern to mask out flag from construct number
TAB As String—TAB

5.1 Bitwise functions
The bitwise functions operate on integers as if they awere strings of bits.
bAnd(a As Integer, b As Integer) As Integer—logical conjunction of bits in a and b
bComp(a As Integer) As Integer—logical complement of bits in a
bCount(a As Integer) As Integer—number of bits in a that are set to 1
bOr(a As Integer, b As Integer) As Integer—logical disjunction of bits in a and b
bSet(a As Integer, mask As Integer, b As Integer) As Integer—set bits in a exposed by mask

from bits that are 1 in b,
bTest(a As Integer, mask As Integer) As Boolean—return true if any bit in a exposed by mask is

1
bXor(a As Integer, b As Integer) As Integer—logical exclusive-or of bits in a and b

5.2 Arithmetic functions
Exp(x As Double) As Double—e to power of x
Log(x As Double) As Double—natural logarithm of x
Min(x As Double, y As Double) As Double—minimum of x and y
Max(x As Double, y As Double) As Double—maximum of x and y
MinMax(x As double, mi As double, ma As double) As double—x if in range [mi,ma], mi if

x<mi, ma if x>ma
Pow(x As Double, y As Double) As Double—x to power of y
Sqrt(x As Double) As Double—square root of x

5.3 Arithmetic rounding functions
Abs(x As Double) As Double—absolute value of x
Ceil(x As Double) As Double—x rounded up to nearest integer
Floor(x As Double) As Double—x rounded down to nearest integer
Round(x As Double) As Double—x rounded to nearest integer

5-2

5.4 Trignometric functions
Trignometric functions represent angles in radians.
Acos(x As Double) As Double—inverse cosine of x
Asin(x As Double) As Double—inverse sine of x
Atan(x As Double) As Double—inverse tan of x
Atan2(x As Double, y As Double) As Double—arctangent of the point specified in x, y

coordinates, i.e. angle from the x-axis to a line drawn through the origin and the point
specified

Cos(x As Double) As Double—cosine of x
Sin(x As Double) As Double—sine of x
Tan(x As Double) As Double—tangent of x

5.5 Strings formatted from numbers
Format(x As Double, fmt As String) As String—convert x to string using fmt as format
sFormat(x As Double, fmt As String) As String—as for Format but padding with spaces if

necessary
sNumeric(s As String) As Boolean—true if s in a valid numeric form as might be created by

Format
The format specification string comprises one or more special characters that control how the
number will be formatted:
• #—placeholder that displays the digit from the value if it is present. If fewer placeholder

characters are used than in the passed number, then the result is rounded;
• 0—placeholder that displays the digit from the value if it is present. If no digit is present, 0

(zero) is displayed in its place;
• .—placeholder for the position of the decimal point;
• ,—placeholder that indicates that the number should be formatted with thousands separators;
• %—displays the number multiplied by 100;
• (—displays an open parenthesis;
•)—displays a closing parenthesis;
• +—displays the plus sign to the left of the number if the number is positive or a minus sign if

the number is negative;
• -—displays a minus sign to the left of the number if the number is negative. There is no

effect for positive numbers;
• E or e—displays the number in scientific notation.;
• \character—displays the character that follows the backslash.
The difference between Format and sFormat is that sFormat pads out a number with spaces on
the left to comply with the width specification, whereas Format does not.

5-3

5.6 String-numeric conversion functions
Asc(s As String) As Integer—ASCII value of first character of s
AscB(s As String) As Integer—ASCII value of first byte of s
BooStr(b As Boolean) As String—“false” if b is false, otherwise “true”
Chr(x As Double) As String—string consisting of character whose ASCII value is x
ChrB(x As Double) As String—string consisting of one-byte character whose ASCII value is x
CStr(x As Double) as String—x as string using system-defined character for decimal separator
Hex(i As Integer) As String—hexadecimal form of i
Oct(i As Integer) As String—octal form of i
Str(x As Double) As String—x as string using “.” as decimal separator
Val(s As String) As Double—numeric form of numeric string in s

5.7 String modify functions
Lowercase(s As String) As String—convert all characters in s to lowercase
Titlecase(s As String) As String—start each word in s with an uppercase character
Uppercase(s As String) As String—convert all characters in s to uppercase
sCapitalize(s As String) As String—convert first character of s to uppercase

LTrim(s As String) As String—trim whitespace on left of s
RTrim(s As String) As String—trim whitespace on right of s
Trim(s As String) As String—trim whitespace on left and right of s
sReplaceEOL(s As String, linend As String) As String—replace line endings with linend
sClean(s As String) As String—replace TAB with space and line endings with CRLF
sFill(s As String, len As Integer[, fill As String][, right As Boolean]) As String—extend the

string to be at least as long as len by adding the optional fill parameter to the left if the
optional right parameter is false or to the left if it is true—if the fill parameter is absent it
is a space—if the right parameter is absent it is false

Base64Encode(s As String) As String—encode s to Base64
Base64Decode(s As String) As String—decode s from Base64
sURLEncode(String) As String—encode s to be an encoded URL
sURLDecode(String) As String—decode s as encoded URL to be a normal string

5.8 String field and array function
The field functions treat the first string argument as a 1-based array of fields separated by the
(case-insensitive) second string argument.
CountFields(s As String, sep As String) As Integer—number of fields in first string

5-4

NthField(s As String, sep As String, idx As Integer) As String—field indexed by idx—empty if
idx is greater than the number of fields

sCount(s As String [, sep As String]) As Integer—returns number of fields in the first string —if
sep is absent it is TAB

sFind(s As String, find as String[, sep As String]) As Integer—returns the index of field find in
the fields in s, zero if not present—if sep is absent it is TAB

sGet(s As String[, sep As String][, first As Integer][, last As Integer]) As String—gets the fields
from first through last—if sep is absent it is TAB—if last is absent the field specified by
first is returned—if last is -1 the field from first to the end of s are returned—if first and
last are absent the number of fields in s is returned

sGetI(s As String[, sep As String][, first As Integer][, last As Integer]) As Integer—converts the
result to be an Integer

sGetD(s As String[, sep As String][, first As Integer][, last As Integer]) As Integer—converts the
result to be a Double

sMakeDel(del As String, ParamArray par As String) As String—returns a variable length list of
strings separated by del strings

sMake(ParamArray par As String) As String—returns a variable length list of strings separated
by TAB characters

sReplaceNth(s As String, rep As String[, sep As String], n As Integer) As String—replaces field
n in s with rep—field is treated as separated by sep or by TAB if sep is absent

There are also functions for transforming field-based delimited arrays to string arrays and vice
versa.
Join(s() As String[, sep As string]) As String—concatenates the elements of the one-dimensional

array s as fields separated by an optional separator sep, or the space character if one is not
specified

Split(s As String[, sep As string]) As String()—creates an array of the fields in s separated by an
optional separator sep, or the space character if one is not specified

More generally strings may be decomposed using patterns in a regular expression.
sSplit(src As String, regex As String) As String()—splits the string into an array of substrings

using the patterns in the regular expression regex

5.9 Other string functions
InStr([startpos As Integer,] s As String, sep As String) As Integer—position in s of the first

occurrence of the (case-insensitive) string sep in the first—starting at the location
specified by startpos, 1 if that argument is not present—returns 0 if sp is not in s

InStrB([startpos As Integer,] s As String, sep As String) As Integer—as for Instr except treats
string s as bytes rather than characters

Left(s As String, num As Integer) As String—returns num characters from beginning of s
LeftB(s As String, num As Integer) As String—treats string as bytes rather than characters
Len(s As String) As Integer—number of characters in s
LenB(s As String) As Integer—number of bytes in s

5-5

Mid(s As String, startpos As Integer[, num As Integer]) As String—returns number of characters
in s specified by num commencing with that specified by startpos—if num is absent,
returns from startpos to the end of s

MidB(s As String, startpos As Integer[, num As Integer]) As String—treats string as bytes rather
than characters

Replace(s As String, sep As String, rep As String) As String—returns s with the first occurrence
of the case-insensitive string sep replaced by rep

ReplaceB(s As String, sep As String, rep As String) As String—treats string as bytes rather than
characters

ReplaceAll(s As String, sep As String, rep As String) As String—returns s with all occurrences
of the case-insensitive string sep replaced by rep

ReplaceAllB(s As String, sep As String, rep As String) As String—treats string as bytes rather
than characters

Right(s As String, num As Integer) As String—returns num characters from the end of s
RightB(s As String, num As Integer) As String—treats string as bytes rather than characters
StrComp(s1 As String, s2 As String, mode As Integer) As Integer—compares s1 with s2

according to a mode and returns -1 if s1<s2, 0 if s1=s2, 1 if s1>s2—modes are 0 for case-
sensitive comparison, 1 for lexicographic

sUID() As String—a unique identifier based on date and time in microseconds
sWeb(s As String) As String—replaces HTML syntax characters (&<>”) by &..; form—the W

prefix to gGet goes this also

5.10 Array functions
array.Append value—appends a value of the type of the array to the end of the array
array.Insert integer, value—inserts a value of the type of the array at the specified index
array.Remove integer—removes the item at the specified index
array.Pop As value of type of array—returns and removes last item in the array
array.Sort—sorts a one-dimensional array of strings, integers, singles or doubles in ascending

order
array.SortWith(array1[,...arrayN])—same as sort but also one or more additional arrays in the

same order as the base array
array.Shuffle—sorts the array in random order
array.IndexOf(value[,integer]) As Integer—returns position of first occurrence of value in the

array, starting at the optional integer index if present—returns -1 if value is not present

5.11 Color functions
CMY(cyan As Double, magenta As Double, yellow As Double) As Color—color from cyan,
magenta, yellow
HSV(hue As Double, saturation As Double, value As Double) As Color—color from hue,
saturation, value

5-6

RGB(red As Double, green As Double, blue As Double) As Color—color from red, green, blue

5.12 Time functions
Microseconds As Double—number of microseconds since computer was started
Ticks as Integer—number of ticks (60th of second) since computer was started

5.13 Random functions
Rnd As Double—random number in range 0.0 to 1.0

5.14 Popup menu functions
Scripts may present a popup menu specified as a list of items separated by “\”. An item is either a
simple item or itself a list of items separated by “#” specifying a main menu item and submenu
items. An item may have an “@” character within it, in which case the text before the “@” is put
in the menu and the text after it is returned when that menu item is selected. If the item is
selected is in a submenu then the main menu item followed by a space is added to the front of the
submenu item selected in the text returned.
Menu(items As String) As String—show a popup menu as specified by items and return the item

the user selected or the empty string if none

5.15 Data type function
object IsA object class As Boolean—returns true if object is of type object class, false otherwise

or if object is nil

5.16 Matrix operations—transpose, multiply, eigenvalues
mData(M(,) As Single) As Double(,)—returns the matrix converted to doubles
mData(M(,) As Integer) As Double(,)—returns the matrix converted to doubles
mCenter(M(,) As Double, rows As Boolean) As Double(,)—centers the rows or columns as

specified by subtracting the row or column mean from each row or column value
mTranspose(M(,) As Double) As Double(,)—returns the transpose of a matrix of doubles
mMultiply(M(,) As Double, N(,) As Double) As Double(,)—returns the product of two matrices

of doubles
mEigen(M(,) As Double, cutoff As Double, ByRef EVec(,) As Double, ByRef EVecNorm(,) As

Double) As Double()—perform a principal components analysis of the square matrix a—
returns a vector of eigenvalues expressed as the corresponding percentage of the total
variance—cutoff is the lowest percentage eigenvalue of interest—EVec is a matrix of non
normalized eigenvectors and EVecNorm a matrix of normalized eigenvectors

6-1

6 Script specifications, calls, and global hash and vector stores
RepScript supports script calls with argument passing between scripts. It also supports calls
specifying a return script.
Scripts operate as independently compiled programs with access only to data structures defined
within them. To allow data structures to be maintained across script calls RepScript supports two
types of general-purpose storage structure that are maintained in the script environment and
accessible to all scripts operating within it. Both structures allow the storage of arbitrary mixed
data types. One provides hash tables where a data item is stored indexed by a string that names it.
The other provides one-dimensional vectors where a data item is stored indexed by an integer. In
each case RepScript provides a set of named stores so that a number of each type of store may be
defined for differing purposes.

6.1 Script specifications
A script specification has the form “scriptpath/scriptstate” where the scriptpath specfies the file
path of the script in the scripts directory associated with the scripted application:

NetScripts for RepNet scripts;
GridScripts for RepGrid scripts;
ServerScripts for RepServe Scripts.

RepScript looks for the GridScripts and ServerScripts directories in the “Documents/Rep 5” or
“My Documents/Rep 5” directory first and in the application directory second. It looks for the
NetScripts directory in the directory holding the net and its subdirectories first, and then in the
“Rep 5” and application directories.
If the script is not found at the end of the path RepScript searches for it backwards along the path
through successively enclosing directories.
If the scriptpath begins with a “/” it is an absolute reference to the scripts directory, otherwise it
is relative to the location of the calling script.
The extension “.txt” is automatically appended to the script name.
A script may include a “#INCLUDE scriptpath” statement in which case the sub-script specified
by the scriptpath is substituted for the line starting with the #INCLUDE statement. Where sub-
scripts are included in this way any error messages generated specify the name of the sub-script
and the line number within it.
Scripts are automatically compiled and cached when first used so that they do not need to be
recompiled if used again. Each environment has facilities for clearing its script cache so that
when scripts are being developed the latest version is used.

6.2 Script calls
ScriptCall(callscript As String, ParamArray arg As String)—executes the script specified in

callscript and puts the parameters passed in the vector store named by the empty string.
If callscript begins with “$” then “Library/” is substituted for “$ simplifying calls to a
script named “Library” intended to include generally useful subroutines and functions.
Note that a relative script specification is generated allowing there to be a local Library

6-2

script in the same directory as the calling script or a more global one in a containing
directory.

ScriptFlow([callscript][,returnscript])—if the optional argument callscript is present the script
specified is pushed on the call stack to become the next one to be executed when the
current one terminates—if, in addition, the optional argument returnscript is present the
script specified is pushed on the return stack—if no arguments are specified then a script
is popped from the returnstack and pushed on the call stack.

Because ScriptCall executes another script and returns after execution it can be used to access
libraries of subroutines and functions. Note that the script specified by ScriptFlow is stacked and
not executed until the script containing the ScriptFlow call itself terminates making ScriptFlow
more suitable for transfer of control between scripts. The returnscript parameter enables control
to be transferred elsewhere when the called script terminates.
The ScriptWait call in the RepGrid scripting environment extends the ScriptFlow system by
specifying that RepScript wait for keyboard or mouse input from the user and then execute the
script that has been stacked on the ScriptFlow return stack.

6.3 Access to script state and name
ScriptState() As String—script state set up by the call as the last field of the script

specification—this is the simplest way to pass parameters to a script
ScriptName() As String—script name—mainly used in debugging using print statements in

different scripts

6.4 Script execution
The direct execution of scripts is supported
ScriptExecute(src As String)—compiles and executes src
ScriptExecute(names() As String, src() As String)—compiles and executes the joined array of

strings in src() giving each subscript the name specified in names() for purposes of error
messages

Scripts operate as independently compiled programs with access only to data structures defined
within them. To allow data structures to be maintained across script calls RepScript supports two
types of general-purpose storage structure that are maintained in the script environment and
accessible to all scripts operating within it. Both structures allow the storage of arbitrary mixed
data types. One provides hash tables where a data item is indexed by a string that names it. The
other provides one-dimensional vectors where a data item is indexed by an integer. In each case
RepScript provides a set of named stores so that a number of each type of store may be defined
for differing purposes.

6.5 Hash table functions
Hash tables are named stores containing named items having values of any type. The default
store is named by the empty string. The stores are created automatically when values are set.
hSet(v As datatype, hitem As String[, hstore As string])—sets the value of hitem in the store

hstore to be v where v can be of type String, Integer, Double or Boolean—if hstore is
absent it is taken as the empty string

6-3

hGet(hitem As String[, hstore As String]) As String—gets the value of hitem in the store hstore
as a String—if hstore is absent it is taken as the empty string

hGetI(hitem As String[, hstore As String]) As Double—gets the value as an Integer
hGetD(hitem As String[, hstore As String]) As Double—gets the value as a Double
hGetB(hitem As String[, hstore As String]) As Double—gets the value as a Double
hCheck(hitem As String[, hstore As String]) As Double—returns true if there is an item hitem in

the store hstore—if hstore is absent it is taken as the empty string
hCheckGet(ByRef s As String, hitem As String[, hstore As String]) As Boolean—as hCheck but

returns the value in the String s
hCount([hstore As String]) As Integer—number of items in store hstore—if hstore is absent it is

taken as the empty string
hKeysA([hstore As String]) As String()—array of keys indexing items in store hstore—if hstore

is absent it is taken as the empty string
hEmpty([hstore As String])—empties hstore of items—if hstore is absent it is taken as the empty

string
hRemove (hitem As String[, hstore As string])—removes hitem from the store—if hstore is

absent it is taken as the empty string
hKill([hstore As String])—removes hstore—if hstore is absent it is taken as the empty string
hDump([hstore As string]) As String—content of hstore as a list of item names and values—if

hstore is absent then all hash stores are dumped

6.6 Vector functions
Vector stores are named stores containing a vector of items having values of any type. The
default store is named by the empty string. The vectors are created automatically when values are
set and expand automatically to accommodate any index.
vSet(v As datatype, i As Integer[, vstore As string])—sets the value of item i in the vector vstore

to be v where v can be of type String, Integer, Double or Boolean—if vstore is absent it is
taken as the empty string

vInsert(v As datatype, i As Integer[, vstore As string])—inserts a new item at index i in the
vector vstore and sets its value to be v—if vstore is absent it is taken as the empty string

vPush(v As datatype[, vstore As string])—pushes a new item at the end of the vector vstore and
sets its value to be v—if vstore is absent it is taken as the empty string

vGet(i As Integer[, vstore As string]) As String—gets the value of item i in the vector vstore as a
String—if vstore is absent it is taken as the empty string

vGetI(i As Integer[, vstore As string]) As Integer—gets the value of item as an Integer
vGetD(i As Integer[, vstore As string]) As Double—gets the value of item a Double
vGeB(i As Integer[, vstore As string]) As Boolean—gets the value of item as a Boolean
vExtract(i As Integer[, vstore As string]) As String—gets the value of item i in the vector vstore

as a String and removes the item from the vector—if vstore is absent it is taken as the
empty string

6-4

vExtractI(i As Integer[, vstore As string]) As Integer—extracts the value of item as an Integer
vExtractD(i As Integer[, vstore As string]) As Double—extracts the value of item as a Double
vExtractB(i As Integer[, vstore As string]) As Boolean—extracts the value of item as a Boolean
vPop([, vstore As string]) As String—gets the value of the last item in the vector vstore as a

String and removes the item from the vector—if vstore is absent it is taken as the empty
string

vPopI([, vstore As string]) As Integer—pops the value of item as an Integer
vPopD([, vstore As string]) As Double—pops the value of item as a Double
vPopB([, vstore As string]) As Boolean—pops the value of item as a Boolean
vCount([, vstore As string]) As Integer—dimension of the vector vstore—if vstore is absent it is

taken as the empty string
vCountSet(n As Integer [, vstore As string]) As Integer—set the dimension of the vector vstore

to n—if vstore is absent it is taken as the empty string
vOK([, vstore As string]) As Integer—return true if the vector vstore has any items in it—if

vstore is absent it is taken as the empty string—used with vPop to get items from stack
vDump([, vstore As string]) As String—content of vstore as a numbered list of values—if vstore

is absent it is taken as the empty string

7-1

7 Stream and text window functions
RepScript supports writing text to named streams which are text buffers that automatically
expand as necessary. It enables text windows to be created with associated streams and the text
in those streams to be flushed to appear in the window. Each stream has an associated numeric
format string as used by the sFormat function that can be set and used as the default for numeric
output.

7.1 Stream write functions
write(s As String[, stream As String])—write s to the text stream specified—if stream is absent it

is taken as the empty string
writeln([s As String][, stream As String])—write s plus EOL to the text stream specified—if

stream is absent it is taken as the empty string—if s is also absent it is taken as the empty
string

writeStream(stream1 As String[, stream2 As String])—appends the text in stream1 to that in
streams and empties stream1—if stream2 is absent it is taken as the empty string

wSetFont(fname As string, fsize As integer, fstyle As string, fcolor As Color[, stream As
String])—set the text format as specified—fname is a font name or one of the keywords
“#mono” for monospaced, “#serif” for a serif face, “#sans” for a sans-serif face—fstyle is
a string containing “B” to specify bold, “I” to specify italic or “U” to specify underline—
if stream is absent it is taken as the empty string

wFormat(format As String[, stream As String])—set the text stream numeric format as
specified—if stream is absent it is taken as the empty string

writeD(d As Double[, stream As String])—write the double to the stream using sFormat with the
stream’s numeric format—if stream is absent it is taken as the empty string

writeI(i As Integer[, stream As String])—write the integer to the stream using sFormat with an
integer format the same width as the stream’s numeric format—if stream is absent it is
taken as the empty string

writeS(sAs String[, stream As String])—write the string to the stream left-padded with space to
the same width as the stream’s numeric format—if stream is absent it is taken as the
empty string

7.2 Text window write functions
wFlush(s As String[, stream As String])—write s to the text stream specified and flush the stream

to the associated window, if any—if stream is absent it is taken as the empty string
wFlushln([s As String][, nam As String])—write s plus EOL to the text stream specified and

flush the stream to the associated window, if any—if stream is absent it is taken as the
empty string—if s is also absent it is taken as the empty string

wSetText([s As String][, nam As String])—sets the text in window nam to be s, replacing the
existing text and not affecting the stream—if nam is absent it is taken as the empty string

7-2

7.3 Text window create and access functions
wOpen(Window(title As String[, stream As String])—creates a new window having the title and

text stream specified—if stream is absent it is taken as the empty string
wEnsureWindow (title As String[,stream As String])—if there is an existing text window

associated with the text stream specified then set its title as specified—otherwise, if there
is an existing text window with the title specified then associate it with the text stream
specified—otherwise create a stream and associated text window as in wOpen—if stream
is absent it is taken as the empty string

7.4 Text window title functions
WindowTitle([stream As String]) As String—title of window associated with stream specified—

if stream is absent it is taken as the empty string
WindowSetTitle(title As String[,stream As String])—set the title of window associated with the

stream specified—if stream is absent it is taken as the empty string

7.5 Text window state functions
wSetChanged(changed As Boolean[,stream As String])—set the changed flag of window

associated with the stream specified—if stream is absent it is taken as the empty string

8-1

8 System functions

8.1 Access to system parameters
xGet(“System”, hash)—puts system information in the hash store specified—additional items
may be added in specific environments such as RepServe—the standard items are:

Application: application and version, e.g. “Rep 5 1.00”
Date: date in international format, e.g.” 2009-01-12”
Time: time in international format, e.g. “12:35:20”
GMT: date in unix format, e.g. “Mon, 12 Jan 2009 19:35:20 GMT”
LocalIP: network address of machine, e.g. “64.124.9.20”
MAC: MAC number of machine, e.g. “00:24:53:68:AE:EA”
User: name of current user account, e.g. “smethurst”
Machine: name set up for machine on local network, e.g. “Colossus”
Objects: number of active objects, e.g. “1086”
Memory: memory used in bytes, e.g. “21591680”

xSet(ParamArray arg As String)

8.2 File functions
RepScript can access files, generally in one of two directories: the directory containing the Rep 5
application, known by the rootcode, “App”; and the “Rep 5” directory in the user’s “Documents”
or My Documents” directory, known by the rootcode, “Rep”. File specifications are in terms of
one of these directories and a file path within it.
FileAppend(s As String, path As String[, rootcode As String])—append s to file—if rootcode is

absent it is “Rep”
FileDelete(path As String[, rootcode As String])—delete file—if rootcode is absent it is “Rep”
FileExists(path As String[, rootcode As String][, dir As Boolean]) As Boolean—dir is true if file

being checked should be a directory—return true if specified file exists—if dir is absent it
is false—if rootcode is also absent it is “Rep”

FileRename(newname As String, path As String[, rootcode As String])—rename the file—if
rootcode is absent it is “Rep”

FileSave(dat As String, path As String[, rootcode As String][, bom As Boolean])—save dat in
the file—if bom is true add a unicode BOM to the start of the file to indicate UTF-8
text—if bom is absent it is true—if rootcode is also absent it is “Rep”

FileSave(dat As String, path As String, rootcode As String)—if rootcode is absent it is “Rep”
FileStr(path As String[, rootcode As String]) As String—if rootcode is absent it is “Rep”
FileSelect(prompt As String, name As String, filter As String) As String—calls the operating

system’s file open dialog and returns the file specified in the form of the file identifier
that RepNet generates when a file is dragged to a net—returns an empty string if user
cancels

8-2

wOpenURL(ByRef fid As String) As Boolean—true if file exists that is specified by the
identifier that RepNet generates when a file is dragged to a net then return true and open
the file in its associated application

8.3 Time functions
Time() As Double—time in microseconds since machine started
Time(t As Double) As Double—if t is positive sets a variable to the time in microseconds since

machine started and returns that time—if t is negative returns the time in microseconds
since machine started minus the time previously set in the variable.

8.4 Sound functions
Bleep()—make a beep sound

8.5 Alert and confirm dialog windows
Alert(Heading As String, Message As String)—show an alert modal dialog window
Confirm(Heading As String, Message As String) As Boolean—show a modal confirm dialog
with “OK” and “Cancel” buttons—return true is user clicks “OK.”

9-1

9 XML functions
RepScript can open, create and navigate xml document trees, and access, change and create items
within them. this is done through the function xml which takes a variable number of argument
strings.

xml(argument strings)—may return a value
If there is a return value it is also of type String. Other types can be specified by a suffix letter,
xmlI for Integer, xmlD for Double, xmlB for Boolean and xmlX for a call without a return value.

9.1 XML document open and create functions
xml("OpenDocument")—open a file as an xml document
xml("NewDocument")—create a new xml document
xml("String")—document as string suitable for filing

9.2 XML document navigation functions
xml("Down")—if there are child nodes of top of stack then push the first one and return

number—if stack is empty return -1, if no children return 0 AND do not change stack
xml("Up")—pop the stack
xml("Top")—go to the root of the document tree
xml("Next")—replace top of stack with next node and return true—if no more then pop stack and

return false
xml("Previous")—step back to previous node

9.3 XML document data access functions
xml("Name")—name of current node
xml("Prefix")—namespace prefix of current node
xml("LocalName")—name of current node without namespace prefix
xml("NameSpace")—namespace URI of current node
xml("Value")—value of current node
xml("Text")—first text item
xml("AttributeCount")—number of attributes
xml("Attribute",attribute)—value of attribute specified
xml("AttributeName",attribute)—value of attribute specified
xml("Type")—type of current node—an integer indicating the following types:

1 Element
2 Attribute
3 Text
4 CData Section
5 Entity Reference
6 Entity

9-2

7 Processing Instruction
8 Comment Node
9 Document Node
10 Document Type
11 Document Fragment
12 Notation
13 Other

9.4 XML document data creation functions
xml("NewElement",name,text)——create a new element with text specified
xml("NewAttribute",attribute,value)—create a new attribute with value specified

5-1

10 Grid functions
RepScript provides functions to access a grid, getting and setting its data. The grid accessed is
initialized by RepGrid and WebGrid to be the grid being elicited or edited, and can be set up by a
RepNet script to refer to a stored grid associated with a net.

gGet(argument strings) gets data from a grid.
gSet(argument strings) changes data in a grid.

The arguments to these functions are always of type String. The default return type for gGet is
String but can also be another type as specified by a suffix letter, gGetI for Integer, gGetD for
Double, gGetB for Boolean, gGetW for web encoded (i.e. the quote character become “"”
and so on for angle brackets and ampersand), gGetX for a call without a return value.
There are also some grid functions that return arrays: gGetA, gGetAI, gGetA2S.

10.1 Creating, opening and saving a grid
In the RepGrid and RepServe environments the grid being edited is automatically made
avaialable for access through the gGet and gSet function. In other environments such as RepNet
one may wish to open a grid and the following functions are provided.
gNew()—creates a new grid
gOpen() As Boolean—puts up a file open dialog and opens the specified grid—returns true if

grid opened successfully
gOpen(path As String[, rootcode As String]) As Boolean—opens a grid within the directory

specified by rootcode (“App” or “Rep”) along the path specified within that directory and
return true if successful—rootcode is “Rep” if absent

gOpenFID(ByRef fid As String) As Boolean—opens a grid using the file identifier that RepNet
generates when a file is dragged to a net and return true if successful—search may be
involved to find the file and the function updates fid to the actual value it uses

gSet(“Save”, path[, rootcode])—saves the grid within the directory specified by rootcode (“App”
or “Rep”) along the path specified within that directory—rootcode is “Rep” if absent

gSet(“Window”, title)—open grid (typically created by gNew) that is not in a window in a
window with the title as specified

10.2 Grid data Items
gGet()—grid data structure encoded as if for filing
gGet(“Grid”, hstore)—grid data structure encoded in the hash store specified
gGet(“nE”)—number of elements
gGet(“nC”)—number of constructs
gGet(“Identifier”)—an identifier for the grid
gGet(“File”)—grid file name, if any
gGet(“TypesSupported”) As Integer—a bit-pattern corresponding to the rating types supported

5-2

10.3 Settable grid data Items
These are accessed through gGet(“Item Name”) and gSet(“Item Name”, value).
gGet(“E”)—singular term for an element
gGet(“Es”)—plural term for elements
gGet(“C”)—singular term for a construct
gGet(“Cs”)—plural term for constructs
gGet(“UID”)—grid UID
gGet(“Date”)—date when the grid was initiated
gGet(“Time”)—time when the grid was initiated
gGet(“Place”)—location where the grid was initiated
gGet(“Name”)—name of grid
gGet(“Note”)—note attached to name
gGet(“Context”)—purpose of grid
gGet(“Annotation”)—annotation of grid
gGet(“Origin”)—path to the original grid if it derives from one
gGet(“Meta”)—bit pattern specifying the meta values allowed
gGet(“MinR”)—default minimum rating value
gGet(“MaxR”)—default maximum rating value
gGet(“Command”)—command string controlling elicitation
gGet(“Status”)—status number used to indicate the derivation of a grid
gGet(“Display”)—parameter values specified for Display analysis
gGet(“Focus”)—parameter values specified for Focus analysis
gGet(“PrinGrid”)—parameter values specified for PrinGrid analysis
gGet(“Compare”)—parameter values specified for Compare analysis
gGet(“Crossplot”)—parameter values specified for Crossplot analysis
gGet(“Statistics”)—parameter values specified for Statistics analysis
gGet(“Matches”)—parameter values specified for Matches analysis
gGet(“Style”)—parameter values specified for the styles used in analysis
gGet(“Types”)—types number used in WebGrid
gGet(“Control”)—control number used in WebGrid
gGet(“Body”)—body specified in WebGrid
gGet(“Header”)—header specified in WebGrid
gGet(“Body”)—body specified in WebGrid
gGet(“Trailer”)—trailer specified in WebGrid
gGet(“LimitE”)—limit on number of elements
gGet(“LimitC”)—limit on number of constructs

5-3

gGet(“XXX”)—additional parameter XXX specified in a script or web page

10.4 Grid elements
gGet(“E”, En)—name of the element number En
gGet(“E”, En, hstore) also puts the full specification of the element in the hash store specified
gSet(“E”, En, hstore) sets the element values specified in the hash store
gSet(“NewE”, hstore) adds an element with the values specified in the hash store
gSet(“NewE”, En, hstore) inserts an element with the values specified in the hash store
gSet(“RemoveE”, En) removes the element specified
gSet(“Move”, vstore, En) moves the vector of elements specified by number in vstore to position

En

10.5 Grid constructs
gGet(“C”, Cn)—name or identifier of the construct number Cn
gGet(“C”, Cn, hstore) also puts the full specification of the construct in the hash store specified
gSet(“C”, Cn, hstore) sets the construct values specified in the hash store
gSet(“NewC”, hstore) adds a construct with the values specified in the hash store
gSet(“RemoveC”, Cn) removes the construct specified
gSet(“Move”, vstore, Cn) moves the vector of constructs specified by number in vstore to

position Cn

10.6 Grid items
gGet(“I”, item)—value of item specified
gSet(“I”, item, value)—set value of item as specified—if item is a reserved name an underline

character is appended before its name (it is a good convention for user items to have
names commencing with underline to distinguish them from system variables)

10.7 Grid values
gGetA2D As Double(,)—returns a matrix of the values in a grid scaled in the range [-1.0,+1.0]
gGet(“V”, Cn, En)—value in the grid for construct number Cn, element number En
gSet(“V”, Cn, En, value) sets the value for construct number Cn, element number En
gSet(“EndV”, Cn, En, end) sets the value for construct number Cn, element number En to the

maximum if end is true, minimum if false
gGet(“RawV”, Cn, En)—raw value
gGet(“NumV”, Cn, En)—numeric value scaled in the range [-1.0,+1.0]
gGet(“SortV”, Cn, vstore) sets up a vector of values on the construct sorted by value
gGet(“PossV”, Cn, vstore) sets up a possible values for the construct sorted by value

gGet(“Open”)—number of open values in the grid
gGet(“OpenC”)—number of open constructs in the grid

5-4

gGet(“OpenE”, En)—number of open values in the element specified
gGet(“OpenC”, Cn)—number of open values in the construct specified

10.8 Grid selection
gGet(“SelectE”, boolean)—number of elements with selection as specified
gGet(“SelectE”, boolean, vstore)—also puts those elements in the vector store
gGet(“SelectE”, En)—gets the selection of element number En
gSet(“SelectE”, En, value)—sets the selection of element number En to value
gSet(“SelectE”, value)—sets the selection of all the elements to value
gGetAI(“SelectE, boolean) As Integer()—array of element numbers with selection as specified

gGet(“SelectC”, boolean)—number of constructs with selection as specified
gGet(“SelectC”, vstore)—also puts those constructs in the vector store
gGet(“SelectC”, Cn)—gets the selection of construct number Cn
gSet(“SelectC”, Cn, value)—sets the selection of construct number Cn to value
gSet(“SelectC”, value)—sets the selection of all the constructs to value
gGetAI(“SelectC, boolean) As Integer()—array of construct numbers with selection as specified

10.9 Grid matches
gGet(“MatchE”, threshold, selwt)—a randomly selected element match above threshold, as a

string of three numbers: E1 TAB E2 TAB match level, empty string if none
gGet(“MatchE”, threshold, vstore[,vstore2])—number of element matches above threshold—

puts them in the specified vector store—puts match values in vstore2 if present
gGet(“MatchE”, En, threshold, vstore[,vstore2])—number of matches to element En above

threshold—puts them in the specified vector store—puts matchvalues in vstore2 if
present

gGetA2S((“MatchE”, Cselected As Boolean, Cweight As Boolean, power As Double) As
Single(,)—element match matrix—if Cselected then based on selected constructs—if
Cweight then using construct weights—power specifies Minkowski metric

gGet(“MatchC”, threshold, selwt)—a randomly selected construct match above threshold, empty

string if none
gGet(“MatchC”, threshold, vstore[,vstore2])—number of construct matches above threshold—

puts them in the specified vector store—puts match values in vstore2 if present
gGet(“MatchC”, Cn, threshold, vstore[,vstore2])—number of matches to construct Cn above

threshold—puts them in the specified vector store—puts match values in vstore2 if
present

gGetA2S((“MatchC”, Eselected As Boolean, Eweight As Boolean, power As Double) As
Single(,)—Construct match matrix—if Cselected then based on selected elements—if
Cweight then using element weights—power specifies Minkowski metric

5-5

10.10 Grid analysis
gGet("Display”, param, selwt)—returns a TAB-separated string of fields for a grid Display

analysis based on the parameters and selection/weight specification passed—first field is
image width, second height, third data regarding the locations of elements and constructs
in the image, fourth the PNG image of the Display analysis

gGet("Focus”, param, selwt, hash, anEOL)—returns a TAB-separated string of fields for a grid
Focus analysis based on the parameters and selection/weight specification passed—first
field is image width, second height, third data regarding the locations of elements and
constructs in the image, fourth the PNG image of the Focus analysis—any text output
requested is returned as items in the hstore with the specified EOL string

gGet("PrinGrid”, param, selwt, hash, anEOL)—returns a TAB-separated string of fields for a
grid PrinGrid analysis based on the parameters and selection/weight specification
passed—first field is image width, second height, third eigenvector percentages, fourth
the PNG image of the grid PrinGrid analysis—any text output requested is returned as
items in the hstore with the specified EOL string

gGet("PrinGridClick”, param, selwt, x, y)—returns a string containing the type and number of an
item clicked in a PrinGrid analysis image based on the parameters and selection/weight
specification passed

gGet("Crossplot”, param, selwt)—returns a TAB-separated string of fields for a grid Crossplot
analysis based on the parameters and selection/weight specification passed—first field is
image width, second height, fourth the PNG image of the Crossplot analysis

gGet("CrossplotClick", param, selwt, x, y)))—returns a string containing the type and number
of an item clicked in a Crossplot analysis image based on the parameters and
selection/weight specification passed

gGet("Compare", param, selwt, g2path, g2rootcode))—returns a TAB-separated string of fields
for a grid Compare analysis based on the parameters and selection/weight specification
passed—first field is image width, second height, third data regarding type of Compare
analysis, fourth number of elements in common out of total elements, fifth number of
constructs in common out of total constructs, sixth data regarding type of Compare
analysis, seventh an identifier for the second grid, eight data regarding the locations of
elements and constructs in the image, ninth the PNG image of the Compare analysis

gGetEigen(wtE As Boolean, wtC As Boolean, normalize As Boolean, cutoff As Double,
CMeans() As Double, ByRef LE(,) As Double, ByRef LC(,) As Double) As Double()—
perform a principal components analysis of the grid—returns a vector of eigenvalues
expressed as the corresponding percentage of the total variance—wtE and wtC specify
whether the element and construct weights should be used, and, if so, whether they
should be normalized—cutoff is the lowest percentage eigenvalue of interest—LE and
LC are the element and construct loadings

10-1

11-1

11 Data structures used in grid functions
The grid functions defined in the previous section use a number of data structures that are
defined in this section.

11.1 Reserved names for items in a grid
Name, Note, Context, Annotation, UID
E, Es, C, Cs
MinR, MaxR
Meta, Types
Date, Time, Place
Display Focus, PrinGrid, Crossplot, Compare, Statistics, Matches, Style
Header, AddHead, AddBody
Control, Status, Analysis
Script

11.2 Element specification in a hash store
When a hash store is used to get or set elements, the items in it are:

Name: name As String
Note: note As String
Weight: weight As Integer
Select: selected As Boolean

11.3 Construct Specification in a hash store
When a hash store is used to get or set constructs, the items in it are:

Type: string, first character:- R for ratings; C categories, I integers, F floats
Name: name As String
Note: note As String
LHP: left hand pole name As String
RHP: right hand pole name As String
Range: minimum value, TAB, maximum value
Weight: weight As Integer
Labels: labels and ranges As String and numbers
Level: level As Integer
Ordered: ordered As Boolean
Output: output As Boolean
Select: selected As Boolean
Identifier: identifier As String (only set up by gGet, not used by gSet)

11.4 Variables used in grids
Types—integer containing 1-bit flags determining available data types

1—ratings
2—categories

11-2

4—integers
8—numbers

If types is zero then simple rating scales without names, weights, etc are assumed

Meta—integer containing 1-bit flags determining available meta values

1—open (?)
2—unknown (!)
4—any (*)
8—none (^)
16—inapplicable (~)

Status—integer indicating grid type

0—new grid
1—open existing grid
2—exchange grid
3—elements grid
4—constructs grid
5—copy grid

Analysis—integer containing 1-bit flags used in analysis

1—use selected elements in analysis
2—use selected constructs in analysis
4—use element weights in analysis
8—use construct weights in analysis
16—deselect rather than edit
32—do not normalize weights

Control—integer containing 1-bit flags used in WebGrid

1—turn help off
2—turn off annotation display
4—use selected elements in pair and triad
8—hide analysis parameters (Display, Focus, PrinGrid, Compare, etc)
16—hide elements (Main)
32—hide constructs (Main)
64—hide grid parameters (Options)
128—hide items (Options)
256—hide WebGrid parameters (Options)

11.5 Display parameters
Field 1—integer containing 1-bit flags—default value is 7

1—show plot
2—show title
4—constructs as rows
8—show element and construct numbers
16—shade values

11-3

32—show element notes
64—show construct notes

11.6 Focus parameters
Field 1—integer containing 1-bit flags—default value is 55

1—show plot
2—show title
4—constructs as rows
8—show element and construct numbers
16—shade values
32—tree on right
64—show element notes
128—show construct notes
512—interior clustering

Field 2—integer, element tree cut-off—default value is 25
Field 3—integer, construct tree cut-off—default value is 25
Field 4—integer, tree scale—default value is 100
Field 5—integer containing 1-bit flags—default value is 62

1—output text
2—output for elements
4—output for constructs
8—matches
16—links
32—sorts

Field 6—float, power for Minkowski metric—default value is 1.0

11.7 Compare parameters
Field 1—integer containing 1-bit flags—default value is 27

1—show plot
2—show title
4—show element and construct numbers
8—shade values
16—show graph
32—show match values
64—show percent
256—show element notes
512—show construct notes
1024—reverse order of grids in comparison

Field 2—3 2-bit fields for Minus and for different values of opt, plus 64 if split—default
value is 11

11-4

Field 3—integer, cut-off—default value is 50
Field 4—integer, threshold—default value is 75
Field 5—integer, scale—default value is 100
Field 6—float, power for Minkowski metric—default value is 1.0

11.8 PrinGrid parameters
Field 1—integer containing 1-bit flags—default value is 63

1—show plot
2—show title
4—show axes
8—show dimensions
16—show elements
32—show constructs
64—reverse horizontal
128—reverse vertical
256—reverse depth
512—3D plot
1024—show element and construct numbers
2048—show element notes
4096—show construct notes
16384—do not spread
32768—do not show variance
65536—do not fit element and construct spreads
131072—do not centre on means

Field 2—integer containing 1-bit flags—default value is 14
1—output text
2—output variance
4—output element loadings
8—output construct loadings

Field 3—integer, plot scale—default value is 100
Field 4—integer, horizontal component—default value is 0
Field 5—integer, vertical component—default value is 1
Field 6—integer, depth component—default value is 2
Field 7—integer, horizontal rotation degrees—default value is 20
Field 8—integer, vertical rotation degrees—default value is 10
Field 9—integer, depth rotation degrees—default value is 0

11.9 Matches parameters
Field 1—integer containing type of match and 1-bit flags—default value is 12

1,2—integer, type of match

11-5

 0—all
 1—selected with all
 2—selected with selected
 3—selected with non-selected
4—elements
8—constructs
16—numbers
32—notes
64—separated

Field 2—integer, threshold—default value is 80
Field 3—float, power for Minkowski metric—default value is 1.0

11.10 Crossplot parameters
Field 1—integer containing 1-bit flags—default value is 3

1—show plot
2—show title
4—reverse horizontal
8—reverse vertical
16—reverse depth
32—3D
64—show element and construct numbers
128—show element notes
256—show construct notes
1024—do not spread

Field 2—integer scale—default value is 100
Field 3—integer, construct on horizontal axis—default value is 0
Field 4—integer, construct on vertical axis—default value is 1
Field 5—integer, construct on depth axis—default value is 2
Field 6—integer, horizontal rotation degrees—default value is 20
Field 7—integer, vertical rotation degrees—default value is 10
Field 8—integer, depth rotation degrees—default value is 0

11.11 Statistics parameters
Field 1—integer containing 1-bit flags—default value is 3

1—show summary
2—show statistcs
4—show construct correlations
8—show construct notes

11-6

11.12 Style parameters
Field 1—integer. font size—default value is 12
Field 2—string. font—default value is “Arial”
Field 3—color. background—default value is FFFFE1
Field 4—color. title—default value is 40000
Field 5—color. elements—default value is C80000
Field 6—color. constructs—default value is 000080
Field 7—color. ratings—default value is 004000

Display/Focus/Compare fields
Field 8—color, lines—default value is DCDCDC
Field 9—color. low value shading—default value is FFFFFF
Field 10—color. middle value shading—default value is DCDCDC
Field 11—color. high value shading—default value is B4B4B4

PrinGrid/Crossplot fields
Field 12—color, links—default value is DCDCDC
Field 13—color, dimensions—default value is 9FDCFF
Field 14—color. axes—default value is 787878
Field 15—color, plane—default value is FFCC00

Identifier field
Field 16—integer specifying grid identifier used in titles, consisting of five 1-bit flags:

1—use ID field if any, otherwise UID
2—use name
4—use note—if name is also specified, put not in parentheses after it
8—use date

16—use time
If zero, it is taken to be 6, use name and note

Status field
Field 17—integer consisting of two 1-bit flags:

1—no background
2—black and white

11.13 Selection and weight specification
The selwt parameter specifies whether selected and weighted elements and constructs should be
used in analysis. It is an integer consisting of four 1-bit flags:

1—use element weights
2—use construct weights
4—use selected elements
8—use selected constructs

12-1

12 RepGrid library
The RepGrid script environment provides some additional functions largely concerned with
managing the script window which is a text window into which scripts may enter styled text and
the user may type text or click on the mouse.
Text output to the window may be declared clickable by placing a code string followed by a
backslash character at the beginning of the text string. When the text is clicked the code string is
made available to the script.

14.1 Script window management
UndoSave(action As String)—saves the current grid on the undo stack before changing it, also

storing the action that will be taken to change it
Halt(message As String)—stop current script and append the message to the text in the script

window
SetMessage(message As String)—sets the message text above the script window

14.2 Script window functions
SetBackColor(c As Color)—set the background color of the script window
StyleAdd(name As String, aTextAlign As Integer, aTextStyle As Integer, aTextSize As Integer,

aTextColor As color, aTextFont As String)—add a new style by name to a hash table of
styles

StyleSet(style As String)—set the default style as specified
TextClear()—clear the script window
Output(s As String)—append s in the default style to that in the script window
OutputSelect(s As String))—append s in the default style to that in the script window and selects

the new output
Output(s As String, style As String)—append s in the specified style to that in the script

window—do not change the default style

14.3 Script calls supporting interaction
The RepGrid script environment manages user interaction with the script window by supporting
script calls that wait for interaction as specified in an input mode. The modes are designated by
an integer and constants are defined for some of them:
 0: script halted
 1: script running
 kClick=2: script waiting for mouse click
 kText=3: script waiting for text input terminated by return or mouse click if any

defined
 kCMenu=4: script waiting for text input terminated by return or mouse click if any

defined or construct menu defined in item "C" in the default hash store
(named by the empty string)

12-2

 kMenu=5: script waiting for text or click if any defined or menu defined in item "M""
in the default hash store (named by the empty string)

ScriptWait(returnscript As String, imode As Integer)—the script specified is pushed on the
return stack and then RepScript waits for user interaction as specified in imode—when
the specified interaction is complete RepScript executes a Flow() function to return to the
specified script

GetiMode() As Integer—current input mode
InCode() As String—the code specified in the clickable text that was clicked
Input() As String—the text entered by the user, either by typing or through a menu

13-1

13 RepSocio library
The RepSocio script environment provides some additional functions concerned with managing
the query and response fields, accessing the grids, controlling the Socio analyses, and accessing
the results.
For script purposes, the grids that have been added to RepSocio are accessed through their
accession number in the left hand column that is treated as a local unique identifier.
The SocioGet function returns a string and is used to get data from RepSocio. It has the usual
variants, SocioGetI, SocioGetD and SocioGetB to return the equivalent integer, double or
Boolean. There are also SocioGetAI, SocioGetAD, SocioGetA2I, and SocioGetA2D functions
returning integer and double vectors and matrices. The SocioSet subroutine is used to control
RepSocio and does not return a value.

13.1 Accessing a specific grid
SocioGrid(n As Integer) set the grid number n to that which the gGet and gSet functions access,

thus making the data in any of the grids added to RepSocio fully accessible.

13.2 Accessing the text fields in the scripts pane
The RepSocio scripts pane has a query field at the top above which is a query field header line,
and a response field at the bottom above which is response field header line and below which is a
message line. All of these are accessible to a script, and the script may also change the
configuration, for example to omit the query field.
When a script is run from the scripts menu in the RepSocio scripts pane an output stream named
“q” is set up to output to the query field, and ones named “r” and “” (the default output stream)
are set up to output to the response field. This allows the default stream to be redirected to
another text field without loss of access to the response field. The format of both streams is set to
9pt monospaced with a numeric format of “-##0.00”, suitable for the matrix data likely to be
output.
The text in all five areas may also be written and read without going through a stream. The text
fields are named: “q” query header; “qt” query field; “r” response header; “rt” response field;
and “m” message,
SocioSet(“Configure”, config As String)—sets the configuration to have query and response

fields if config is “q”, and just a response field if it is “r”.
SocioSet(“Field”, name As String, text As String)—sets the text of the field named as specified.
SocioGet(“Field”, name As String) As String—returns the text of the field named.

13.3 Accessing the list of grids
SocioGetI(“NG”) As Integer—returns the number of grids in the list.
SocioGetAI(“Select”) As Integer()—returns a vector of the numbers of the grids in the list, in the

order they are in the list which may not be their numerical order if they have been sorted.
SocioGetB(“Select”, n As String) As Boolean—returns true if grid number n has been selected.
SocioGet(“Grid”) As String—returns tab-separated string of the values in the nine columns for

grid n.

13-2

SocioSet(“Select”, n As String, sel As String)—sets the selection of grid number n as specified
by the Boolean sel.

SocioSet(“Select”, list As String)—list is a tab-separated list of grid numbers—the selection of
each of the grids in RepSocio is set if its number is on the list and unset otherwise.

13.4 Controlling and accessing Socio analyses
The status of the Socio computation, whether it has been run, what parameters have been set, and
so on, can be read and the computation can be run from a script if this has not been done
manually. All the results of the various Socio analyses are also available for output and further
processing.
SocioGet(“Socio”) As String—returns a tab-separated string of the status of Socio and relevant

parameters:-
Field 1: blank if Socio not run; “E” if common elements; “C” common constructs; “X” if

exchange grids with both common elements and common constructs;
Field 2: number of grids selected;
Field 3: number of common elements;
Field 4: number of common constructs;
Field 5: power;
Field 6: identifier flags: 1 ID, 2 name, 4 note, 8 date, 16 time, 256 item #;
Field 7: decimal places for average.

SocioSet(“Socio”)—run Socio Analysis.
SocioSet(“Socio”, mode As String)—run Socio Analysis for common elements if mode is “E”,

common constructs if it is “C” and both if it is “X”.
SocioGetA2D(“Socio”) As Single(,)—return matrix of grid matches if computed, nil if not
SocioGetA2I(“Socio”) As Integer(,)—return vector of pairs of grids sorted by declining match if

computed, nil if not
SocioGetAD(“Mode”) As Single ()—return vector of mode scores if computed, nil if not
SocioGetA2I(“Mode”) As Integer()—return vector of grid/item pairs sorted by declining mode

score if computed, nil if not
SocioSet(“Average”)—set the grid accessible by gGet and gSet to be the average grid if any.
SocioGetA2D(“Average”) As Single(,)—return matrix of average values if computed, nil if not
SocioGetA2D(“SD”) As Single(,)—return matrix of standard deviations if computed, nil if not
SocioGetA2I(“Average”) As Integer(,)—return vector of construct/element pairs sorted by

increasing standard deviation if computed, nil if not

14-1

14 RepServe library
The RepServe environment provides access to the client request including any POST data, and an
output stream to buffer the text generated to be returned to the client.

14.1 Getting client request
GetRequest() As String—get the request up to and not including the POST data
GetRequestField(field As String) As String—value of request field specified
GetPost(name As String) As String—value of item named in form posted
GetPostI(name As String) As Integer—value as Integer of item named in form posted
CheckPost(name As String, ByRef value As String) As Boolean—true if item named was

posted—value returned as String
CheckPostI(name As String, ByRef value As Integer) As Boolean—true if item named was

posted—value returned as Integer
OpenGrid() As Boolean—sets up the grid from data embedded in hidden fields—returns true if

grid is valid

14.2 Sending server response
Out(s As String)—appends s to the RepServe stream
Outln([s As String])—append s if present followed by CRLF to the RepServe stream
OutWebGrid()—outputs the grid data in hidden fields
GetOut() As String—return the output stream as a String and clear it
SendSocket(s As String)—sends s as the response

14.3 WebGrid functions
GetNextGridHeader(path As String, rootcode As String, ByRef n As Integer) As String—

increment n and return the header information about the n’th grid in the directory
specified—start with n zero—set n zero when there are no more grid files

14.4 WebNet functions
GetNetPNG(net As String) As String—returns a PNG representation of the net
GetNetClickNote(net As String, x As Integer, y As Integer) As String—note field of node at

location specified in net—empty string if no node (or note field is empty)

14.5 Server log window functions
SendLog(s As String, time As Boolean)—append s to the log window including the time if time

is true

14-2

14.6 System function extensions
xGet(“System”, hash)—adds the following items in the RepServe environment:

RemoteIP: numeric internet address of client
RemoteDNS: symbolic internet address of client
IPAndPort: internet internet address and port of server as specified by client
Email: the email address specified in the RepServe pane
Flags: the flags set by the checkboxes in the RepServe pane

The flgs are a bit-pattern set as follows:
1 Log in window
2 Log in log file
4 Show memory use in log
8 Show client browser in log
16 Show socket activity
32 Show request in log window
64 Show post data in log window
128 Show reply in log window
256 Capture grids
2048 Listening on local machine
4096 Also listening on Internet

15-1

15 Net functions
RepScript provides functions to access a net, getting and setting its data. The net accessed is
initialized by RepNet to be the net that has been opened.

nGet(argument strings) gets data from a net.
nSet(argument strings) changes data in a net.

The arguments to these functions are always of type String. The default return type for nGet is
String but can also be another type as specified by a suffix letter, nGetI for Integer, nGetD for
Double, nGetB for Boolean, nGetX for a call without a return value.
There are also some net functions that return arrays: nGetA, nGetAI, gGetA2I.

15.1 Net management
nSet(“Update”)—updates the visible appearance of the net for any changes made
nSet(“Refresh”)—refreshes the visible appearance of the entire net
nSet(“UndoSave”, action)—saves the current net on the undo stack before changing it, also

storing the action that will be taken to change it

15.2 Net data items
nGetI(“NN”) As Integer—number of nodes
nGetI(“NL”) As Integer—number of links
nGet(“Net”, hash)—net encoded in hash store specified
nGetB(“Lock”) As Boolean—true if net locked
nSet(“Lock”, b)—set the lock to b, where b is “true” or “false”
nGet(“File”) As String—net file name if any
nGet(“Field”, field) As String—text in field specified, either “Label” or “Note”
nSet(“Field”, s, field)—put s in field specified, either “Label” or “Note”

15.3 Settable net data items
These are accessed through gGet(“Item Name”) and gSet(“Item Name”, value).
nGet(“Date”)—date when the net was initiated
nGet(“Time”)—time when the net was initiated
nGet(“Place”)—location where the net was initiated
nGet(“Creator”)—if present, the program that created the net, usually followed by a TAB and a

list of parameters—the Rep 5 programs that create nets, such as Focus and PrinGrid, set
up this field

nGet(“File”)—if present, the file or files from which the net was created, typically grids—the file
identifier(s) are of the form described in Section 3.3 of the RepNet Manual—if more than
one is present they are separated by EOL characters

nGet(“XXX”)—additional parameter XXX specified in a script—to avoid confusion with
existing keywords it is advisable to use an underscore character to prefix the name

15-2

15.4 Net nodes
nSet(“NewNodeType”, name, shape, decoration, penwidth, style, fontsize, font, textcolor,

framecolor, fillcolor, headcolor, extension)—adds the new node type specified
nGetA(“NodeTypes”) As String()—array of node type names
nGetA(“Nodes”) As String()—array of node labels
nGetA(“Notes”) As String()—array of node notes
nGetAI(“Types”) As Integer()—array of node types
nSet(“Note”, node, note)—sets the specified node’s note
nGet(“Node”, node, hstore) puts the data from the node specified in the hash store specified and

returns its label
nGet(“NodeNew”, hstore) adds a new node with the data specified in the hash store and returns

its number
nSet(“NodeAdjust”, node, hstore) changes the data of the node specified to the values specified

in the hash store
nSet(“NodeMoveBy”, node, dx, dy) changes the position of the node by the specified amounts
nSet(“NodeMoveTo”, node, x, y) changes the position of the centre of the node as specified

15.5 Net states
nSet(“NewStateType”, name, color, fillcolor)—adds the new state type specified
nGetA(“StateTypes”) As String()—array of state type names
nGetAI(“States”) As Integer ()—array of node states
nSet(“State”, node, state)—sets the specified node’s state

15.6 Net lines
nSet(“NewLineType”, name, decoration, linecolor, fillcolor)—adds the new line type specified
nGetA(“LineTypes”) As String()—array of line type names
nGetA2I(“Lines”) As Integer(,)—2D array of node lines as: column 0: link type; 1: start node

number; 2 end node number; 3 flags (1: active link; 2: show link)
nGetA(“Lines”) As String()—array of line labels, if any
nSet(“Line”, node1, node2, linetype)—add line from the node numbered node1 to that numbered

node2 of type linetype, replacing any existing line
nSet(“LineShow”, line) shows the label of the line with the specified number if show is “true” or

hides it if show is “false”—this individual specification applies when the RepNet window
checkbox is unset

15.7 Script interaction in RepNet
When a net with a script is opened the script is called from the net with the scriptState set to
“Start”. When the net with a script is locked the script is called with the scriptState set to:
“Cursor” if the mouse moves; “Click” if the mouse is clicked or double-clicked; “Locked” if the
user locks the net. The arguments passed are:

15-3

Start—sent when net is opened—no arguments
Locked—sent when net is locked—no arguments
Cursor—send when the mouse has moved and the cursor needs to be set—node number of

the node under the cursor is sent in vGetI(0), -1 if not over a node—return a cursor
number by vSet(cursornumber,0)

Click—send when the mouse has been clicked or double-clicked—node number of the node
under the cursor is sent in vGetI(0), -1 if not over a node—vGetB(1) is true for a double-
click.

15.8 Node and line specifications in a hash store
When a hash store is used encode a node, the items in it are:

Label: name As String
Note: note As String
Type: type As Integer
TypeName: type name As String
Mark: mark As Integer
Selection: selection As Integer
Left: left position As Integer
Top: top position As Integer
Width: width As Integer
Height: width As Integer

When a hash store is used to encode a line, the items in it are:
Type: type As Integer
Start: start node As Integer
End: end node As Integer
Type: type As Integer

When a hash store is used to encode a net, the items in it are:
Net: indicator that hash store contains net data
Window: window title As String if net is showing in a window
Width: net width As Integer if net is showing in a window
Height: net height As Integer if net is showing in a window
N: TAB-separated list of node ID’s As String
L: TAB-separated list of line ID’s As String

Plus a list of nodes and lines in the format above but with the name of each item suffixed with a
period followed by its ID.

