Cellular Automata

and beyond ...

The World of Simple Programs

Christian Jacob
Department of Computer Science
Department of Biochemistry & Molecular Biology
University of Calgary

CPSC / MDSC 605 — Fall 2003
Cellular Automata

Lindenmayer Systems

Random Boolean Networks

Classifier Systems
Cellular Automata

Global Effects from Local Rules
Cellular Automata: Local Rules — Global Effects

Demos
Cellular Automata

- The CA space is a lattice of cells (usually 1D, 2D, 3D) with a particular geometry.
- Each cell contains a variable from a limited range of values (e.g., 0 and 1).
- All cells update synchronously.
- All cells use the same updating rule (in uniform CA), depending only on local relations.
- Time advances in discrete steps.
One-dimensional Finite CA Architecture

- Neighbourhood size: $K = 5$
 - local connections per cell
- Synchronous update in discrete time steps

Time Evolution of Cell i with K-Neighbourhood

$$C_i^{(t+1)} = f(C_i^{(t)}-\left[\frac{K}{2}\right], \ldots, C_{i-1}^{(t)}, C_i^{(t)}, C_{i+1}^{(t)}, \ldots, C_{i+\left[\frac{K}{2}\right]}^{(t)})$$

With periodic boundary conditions:

$$x < 1 : C_x = C_{N+x}$$

$$x > N : C_x = C_x - N$$
Value Range and Update Rules

- For V different states (= values) per cell there are V^K permutations of values in a neighbourhood of size K.

- The update function f can be implemented as a lookup table with V^K entries, giving V^{V^K} possible rules.

<table>
<thead>
<tr>
<th>v</th>
<th>K</th>
<th>V^K</th>
<th>V^{V^K}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>256</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>32</td>
<td>4.3×10^9</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>128</td>
<td>3.4×10^{38}</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>512</td>
<td>1.3×10^{154}</td>
</tr>
</tbody>
</table>
Cellular Automata: Local Rules — Global Effects

Demos
History of Cellular Automata

• Alternative names:
 – Tessellation automata
 – Cellular spaces
 – Iterative automata
 – Homogeneous structures
 – Universal spaces

• John von Neumann (1947)
 – Tries to develop abstract model of self-reproduction in biology (from investigations in cybernetics; Norbert Wiener)

• J. von Neumann & Stanislaw Ulam (1951)
 – 2D self-reproducing cellular automaton
 – 29 states per cell
 – Complicated rules
 – 200,000 cell configuration
 – (Details filled in by Arthur Burks in 1960s.)
• Threads emerging from J. von Neumann’s work:
 – Self-reproducing automata (spacecraft!)
 – Mathematical studies of the essence of
 • Self-reproduction and
 • Universal computation.

• CAs as Parallel Computers (end of 1950s / 1960s)
 – Theorems about CAs (analogies to Turing machines) and their formal computational capabilities
 – Connecting CAs to mathematical discussions of dynamical systems (e.g., fluid dynamics, gases, multi-particle systems)

• 1D and 2D CAs used in electronic devices (1950s)
 – Digital image processing (with so-called cellular logic systems)
 – Optical character recognition
 – Microscopic particle counting
 – Noise removal
History of Cellular Automata (3)

• Stansilaw Ulam at Los Alamos Laboratories
 – 2D cellular automata to produce recursively defined geometrical objects (evolution from a single black cell)
 – Explorations of simple growth rules

• Specific types of CAs (1950s/60s)
 – 1D: optimization of circuits for arithmetic and other operations
 – 2D:
 • Neural networks with neuron cells arranged on a grid
 • Active media: reaction-diffusion processes

• John Horton Conway (1970s)
 – Game of Life (on a 2D grid)
 – Popularized by Martin Gardner: *Scientific American*
Stephen Wolfram's World of CAs

1976-1982: Quarks and beyond...
Stephen Wolfram’s World of CAs

1981 - 1985: Discoveries about cellular automata...
Stephen Wolfram's World of CAs
Stephen Wolfram’s World of CAs
Example Update Rule

- $V = 2$, $K = 3$

- The rule table for rule 30:

<table>
<thead>
<tr>
<th>111</th>
<th>110</th>
<th>101</th>
<th>100</th>
<th>011</th>
<th>010</th>
<th>001</th>
<th>000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 30$

See examples ...
CA Demos

- *Evolvica CA Notebooks*
Four Wolfram Classes of CA

- **Class 1:**
 A fixed, homogeneous, state is eventually reached (e.g., rules 0, 8, 128, 136, 160, 168).
Four Wolfram Classes of CA

- **Class 2:**
 A pattern consisting of separated periodic regions is produced (e.g., rules 4, 37, 56, 73).
Four Wolfram Classes of CA

- **Class 3:**
 A chaotic, aperiodic, pattern is produced (e.g., rules 18, 45, 105, 126).
Four Wolfram Classes of CA

- **Class 4:**
 Complex, localized structures are generated (e.g., rules 30, 110).
Class 4: Rule 30
Class 4: Rule 110
Further Classifications of CA Evolution

- Wolfram classifies CAs according to the patterns they evolve:
 - 1. Pattern disappears with time.
 - 2. Pattern evolves to a fixed finite size.
 - 3. Pattern grows indefinitely at a fixed speed.
 - 4. Pattern grows and contracts irregularly.

- Qualitative Classes
 - 1. Spatially homogeneous state
 - 2. Sequence of simple stable or periodic structures
 - 3. Chaotic aperiodic behaviour
 - 4. Complicated localized structures, some propagating
Further Classifications of CA Evolution (2)

- Classes from an Information Propagation Perspective
 - 1. No change in final state
 - 2. Changes only in a finite region
 - 3. Changes over an ever-increasing region
 - 4. Irregular changes

- Degrees of Predictability for the Outcome of the CA Evolution
 - 1. Entirely predictable, independent of initial state
 - 2. Local behavior predictable from local initial state
 - 3. Behavior depends on an ever-increasing initial region
 - 4. Behavior effectively unpredictable
The “Game of Life”: a 2D Cellular Automaton

John Horton Conway’s Game of Life
• Wuensche, A. Discrete Dynamics Lab: http://www.santafe.edu/~wuensch/ddlab.html