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The Dictionary ADT

The Dictionary ADT

A dictionary is a finite set (no duplicates) of elements.

Each element is assumed to include
A key , used for searches.

Keys are required to belong to some ordered set.
The keys of the elements of a dictionary are required to be distinct.

Additional data , used for other processing.

Examples:

a dictionary (word is the key, definition is the data)

telephone book (name is the key, phone number is the data)

Similar to Java’s Map (unordered) and SortedMap (ordered) interfaces.
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The Dictionary ADT

Operations Supported

A dictionary must support the following operations:

search(k): Search for and return a reference to an element with
key k if one exists. Throw a KeyNotFoundException if there is no
such element.

insert(k,x): Add the element x with key k if no element with the
same key is included already. Throw a KeyFoundException if an
element with the same key already belongs to the set.

delete(k): Remove the element with key k. Throw a
KeyNotFoundException if no such element is in the dictionary

May also include isEmpty(), size()

Linked lists and arrays are two data structures that can be used to
implement dictionaries. Binary Search Trees are another (subject of
today’s lecture).
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Binary Trees Definition

Binary Tree

A binary tree T is a hierarchical, recursively defined data structure,
consisting of a set of vertices or nodes .

A binary tree T is either

an “empty tree,”

or
a structure that includes

the root of T (the node at the top)
the left subtree TL of T . . .
the right subtree TR of T . . .

. . . where both TL and TR are also binary trees.
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Binary Trees Definition

Example and Implementation Details

Example: Each node has a:

parent:

left child:

right child:
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Binary Trees Additional Terminology

Additional Terminology

Additional terms related to binary trees:

siblings :

descendant (of N) :

ancestor (of N) :

leaf :

size :

depth (of N) :

height :

Note: depth and height are sometimes (as in the text) defined in terms
of number of nodes as opposed to number of edges.
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Binary Trees Relationship Between Size and Depth

Size vs. Depth: One Extreme

This binary tree is said to be full:

all leaves have the same depth

all non-leaf nodes have exactly
two children

Size:

Height:

Relationship:
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Binary Trees Relationship Between Size and Depth

Size vs. Depth: Another Extreme

This binary tree is essentially a
linked list.

Size:

Height:

Relationship:
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Binary Search Trees Definition

Binary Search Tree

A binary search tree T is a data structure that can be used to
implement a dictionary.

T is a binary tree

Each element of the dictionary is stored at a node of T , so

dictionary size = size of T

In order to support efficient searching, elements are arranged to
satisfy the Binary Search Tree Property . . .
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Binary Search Trees Definition

Binary Search Tree Property

Binary Search Tree Property: If T is nonempty, then

The left subtree TL is a binary search tree including all dictionary
elements whose keys are less than the key of the element at the
root

The right subtree TR is a binary search tree including all dictionary
elements whose keys are greater than the key of the element at
the root
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Binary Search Trees Definition

Example

One binary search tree for a dictionary including elements with keys

{1, 3, 5, 6, 7, 10}

1

3

5

6

10

7
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Binary Search Trees Searching

Searching: An Example

Searching for 5:

1

3

5

6

10

7

Nodes Visited:

Start at 6 :

Next node

Next node
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Binary Search Trees Searching

Binary Search Tree Data Structure

public class BST<E extends Comparable<E>,V> {
protected bstNode<E,V> root;
...

protected class bstNode<E,V> {
E key;
V value;
bstNode<E,V> left;
bstNode<E,V> right;
...

}
}

bstNode can also include a reference to its parent
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Binary Search Trees Searching

A Recursive Search Algorithm

public V search(bstNode<E,V> T, E key)
throws KeyNotFoundException {

if (T == null)

else if (key.compareTo(T.key) == 0)

else if (key.compareTo(T.key) < 0)

else

}
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Binary Search Trees Searching

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Termination and Bound on Running Time (tree of height h):
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Binary Search Trees Finding an Element with Minimal Key

Minimum Finding: The Idea

1

3

5

6

10

7

Idea:

Example:
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Binary Search Trees Finding an Element with Minimal Key

A Recursive Minimum-Finding Algorithm

// Precondition: T is non-null
// Postcondition: returns node with minimal key,
// null if T is empty

public bstNode<E,V> findMin(bstNode<E,V> T) {
if (T == null)

else if (T.left == null)

else

}
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Binary Search Trees Finding an Element with Minimal Key

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

worst case running time is Θ(h) (and hence Θ(n))

Proof: exercise
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Exercise

Next lecture...

Think about how to do

insertion (hint: modify search)

deletion (four separate cases need to be handled)

Key: inserting/deleting in such a way that the resulting tree still
satisfies the BST property.
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