
Computer Science 331
Binary Search Trees: Definition and Searching

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #12

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 1 / 20

Outline

1 The Dictionary ADT

2 Binary Trees
Definition
Additional Terminology
Relationship Between Size and Depth

3 Binary Search Trees
Definition
Searching
Finding an Element with Minimal Key

4 Exercise

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 2 / 20

The Dictionary ADT

The Dictionary ADT

A dictionary is a finite set (no duplicates) of elements.

Each element is assumed to include
A key , used for searches.

Keys are required to belong to some ordered set.
The keys of the elements of a dictionary are required to be distinct.

Additional data , used for other processing.

Examples:

a dictionary (word is the key, definition is the data)

telephone book (name is the key, phone number is the data)

Similar to Java’s Map (unordered) and SortedMap (ordered) interfaces.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 3 / 20

The Dictionary ADT

Operations Supported

A dictionary must support the following operations:

search(k): Search for and return a reference to an element with
key k if one exists. Throw a KeyNotFoundException if there is no
such element.

insert(k,x): Add the element x with key k if no element with the
same key is included already. Throw a KeyFoundException if an
element with the same key already belongs to the set.

delete(k): Remove the element with key k. Throw a
KeyNotFoundException if no such element is in the dictionary

May also include isEmpty(), size()

Linked lists and arrays are two data structures that can be used to
implement dictionaries. Binary Search Trees are another (subject of
today’s lecture).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 4 / 20



Binary Trees Definition

Binary Tree

A binary tree T is a hierarchical, recursively defined data structure,
consisting of a set of vertices or nodes .

A binary tree T is either

an “empty tree,”

or
a structure that includes

the root of T (the node at the top)
the left subtree TL of T . . .
the right subtree TR of T . . .

. . . where both TL and TR are also binary trees.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 5 / 20

Binary Trees Definition

Example and Implementation Details

Example: Each node has a:

parent:

left child:

right child:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 6 / 20

Binary Trees Additional Terminology

Additional Terminology

Additional terms related to binary trees:

siblings :

descendant (of N) :

ancestor (of N) :

leaf :

size :

depth (of N) :

height :

Note: depth and height are sometimes (as in the text) defined in terms
of number of nodes as opposed to number of edges.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 7 / 20

Binary Trees Relationship Between Size and Depth

Size vs. Depth: One Extreme

This binary tree is said to be full:

all leaves have the same depth

all non-leaf nodes have exactly
two children

Size:

Height:

Relationship:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 8 / 20



Binary Trees Relationship Between Size and Depth

Size vs. Depth: Another Extreme

This binary tree is essentially a
linked list.

Size:

Height:

Relationship:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 9 / 20

Binary Search Trees Definition

Binary Search Tree

A binary search tree T is a data structure that can be used to
implement a dictionary.

T is a binary tree

Each element of the dictionary is stored at a node of T , so

dictionary size = size of T

In order to support efficient searching, elements are arranged to
satisfy the Binary Search Tree Property . . .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 10 / 20

Binary Search Trees Definition

Binary Search Tree Property

Binary Search Tree Property: If T is nonempty, then

The left subtree TL is a binary search tree including all dictionary
elements whose keys are less than the key of the element at the
root

The right subtree TR is a binary search tree including all dictionary
elements whose keys are greater than the key of the element at
the root

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 11 / 20

Binary Search Trees Definition

Example

One binary search tree for a dictionary including elements with keys

{1, 3, 5, 6, 7, 10}

1

3

5

6

10

7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 12 / 20



Binary Search Trees Searching

Searching: An Example

Searching for 5:

1

3

5

6

10

7

Nodes Visited:

Start at 6 :

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 13 / 20

Binary Search Trees Searching

Binary Search Tree Data Structure

public class BST<E extends Comparable<E>,V> {
protected bstNode<E,V> root;
...

protected class bstNode<E,V> {
E key;
V value;
bstNode<E,V> left;
bstNode<E,V> right;
...

}
}

bstNode can also include a reference to its parent

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 14 / 20

Binary Search Trees Searching

A Recursive Search Algorithm

public V search(bstNode<E,V> T, E key)
throws KeyNotFoundException {

if (T == null)

else if (key.compareTo(T.key) == 0)

else if (key.compareTo(T.key) < 0)

else

}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 15 / 20

Binary Search Trees Searching

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Termination and Bound on Running Time (tree of height h):

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 16 / 20



Binary Search Trees Finding an Element with Minimal Key

Minimum Finding: The Idea

1

3

5

6

10

7

Idea:

Example:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 17 / 20

Binary Search Trees Finding an Element with Minimal Key

A Recursive Minimum-Finding Algorithm

// Precondition: T is non-null
// Postcondition: returns node with minimal key,
// null if T is empty

public bstNode<E,V> findMin(bstNode<E,V> T) {
if (T == null)

else if (T.left == null)

else

}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 18 / 20

Binary Search Trees Finding an Element with Minimal Key

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

worst case running time is Θ(h) (and hence Θ(n))

Proof: exercise

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 19 / 20

Exercise

Next lecture...

Think about how to do

insertion (hint: modify search)

deletion (four separate cases need to be handled)

Key: inserting/deleting in such a way that the resulting tree still
satisfies the BST property.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #12 20 / 20


	The Dictionary ADT
	Binary Trees
	Definition
	Additional Terminology
	Relationship Between Size and Depth

	Binary Search Trees
	Definition
	Searching
	Finding an Element with Minimal Key

	Exercise

