Computer Science 331

Binary Search Trees — Insertion and Deletion

Mike Jacobson

Department of Computer Science

Mike Jacobson (University of Calgary)

University of Calgary

Lecture #13

Computer Science 331

BST Insertion

Q BST Insertion

9 BST Deletion
@ Casel
@ Case 2
@ Case 3
@ Case 4

e Complexity Discussion

e References

Lecture #13 1/17 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 2/17

BST Insertion

Insertion: An Example

Idea:

Nodes Visited (inserting 9):
@ Startat6:
@ Next node
@ Next node
@ Next node

Mike Jacobson (University of Calgary)

Computer Science 331

A Recursive Insertion Algorithm

// Non-recursive public function calls recursive worker function
public void insert(E key, V value)
{ root = insert(root, key, Value); }
protected
bstNode<E,V> insert(bstNode<E,V> T, E newKey, V newValue) {
if (T == null)
else if (newKey.compareTo(T.key) < 0)
else if (newKey.compareTo(T.key) > 0)

else

return T;

Lecture #13 3/17 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 417




BST Insertion BST Insertion
Analysis: Partial Correctness Termination and Bound on Running Time

Prove that insert is partially correct for all trees T of height h.

Base cases are correct (by inspection):
@ empty tree replaced by new node containing newKey and newValue
@ if T.key == newKey, a KeyFoundExcpetion is thrown

Assume that the algorithm is correct for all trees of height <h — 1:
@ if newKey < T.key, key/value inserted in left subtree
@ if newKey > T.key, key/value inserted in right subtree

@ in either case, algorithm is called recursively on a subtree of
height at most h — 1 and new subtree is correct by assumption

@ the new T is still a BST, because both children are BSTs and the
new element was added to the correct subtree

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 5/17

BST Deletion
Deletion: Four Important Cases

Key is/has ...

© Not Found (Eg: Delete 8)
© At a Leaf (Eg: Delete 7)

© One Child (Eg: Delete 10)
© Two Children (Eg: Delete 6)

Let h; denote the height of the subtree with root x at level i of the
recursion. Consider the function f(i) =h; + 1 :

(]
o

Worst case running time is ©(h) :
°
°

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 6/17

BST Deletion Case 1

First Case: Key Not Found

Nodes Visited (delete 8):
@ Startat6:
@ Next node
@ Next node
@ Next node

Idea:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 7117

Mike Jacobson (University of Calgary)

Computer Science 331 Lecture #13 8/17



BST Deletion Case 1 BST Deletion Case 2

Algorithm and Analysis Second Case: Key is at a Leaf

protected bstNode<E,V> delete(bstNode<E,V> T, E key) { 0
if (T '= null) {
if (key.compareTo(T.key) < 0)

T.left = delete(T.left, key); ‘ °

else if (key.compareTo(T..key) > 0)

T.right = delete(T.right,key);
OENON0O

// found node with given key

}
else Idea:
throw new KeyNotFoundException();
return T; Nodes Visited (delete 7):
} @ Startat6:
Correctness and Efficiency For This Case: @ Next node
@ tree is not modified if key is not found (base case will be reached) @ Next node
@ worst-case cost ©(h) (same as search)
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 9/17 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 10/17

BST Deletion Case 2 BST Deletion Case 3

Algorithm and Analysis Third Case: Key is at a Node with One Child

Extension of Algorithm: g

else if () ‘ G

Correctness and Efficiency For This Case:

) Idea:
°
° Nodes Visited (delete 10):
° @ Startat6:
@ Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 11/17 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 12/17




BST Deletion Case 3 BST Deletion Case 4

Algorithm and Analysis Fourth Case: Key is at a Node with Two Children

Extension of Algorithm: 0

else if (T.left == null) ‘ a
else if (T.right == null) ‘ ‘ ‘

Correctness and Efficiency For This Case: Idea:
°
° Nodes Visited (delete 6):
e @ Startat6:
o °
°
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 13/17 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 14 /17

BST Deletion Case 4 Complexity Discussion

Algorithm and Analysis More on Worst Case

All primitive operations (search, insert, delete) have worst-case
complexity ©(n)
else { @ all nodes have exactly one child (i.e., tree only has one leaf)

Extension of Algorithm:

@ Eg. will occur if elements are inserted into the tree in ascending
(or descending) order

¥ On average, the complexity is ©(logn)
Correctness and Efficiency For This Case: @ Eg. if the tree is full, the height of the tree ish = log,(n +1) — 1
°
° Need techniques to ensure that all trees are close to full
° @ want h € ©(logn) in the worst case
o

@ one possibility: red-black trees (next three lectures)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 15/17 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 16 /17



References
References

Binary Trees:

@ Text, Sections 8.1-8.3 Discussed in more detail, including
algorithms for tree traversals

Binary Search Trees:
@ Text, Section 8.4

Note: Deletion Case 4 (deleting a node with two children) is handled
slightly differently in the text — the node is replaced by its “in-order
predecessor” as opposed to the “in-order successor” as done in the
notes. Both methods are equally acceptable.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #13 17 /17



	BST Insertion
	BST Deletion
	Case 1
	Case 2
	Case 3
	Case 4

	Complexity Discussion
	References

