
Computer Science 331
Operations on Binary Heaps

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #25

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 1 / 32

Outline

1 Max-Heapify
Description
Correctness and Efficiency

2 Build-Max-Heap
Description
Correctness and Efficiency

3 Delete-Max
Description
Correctness and Efficiency

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 2 / 32

Max-Heapify Description

Max-Heapify: Introduction

Recall that an array can be used to represent a binary heap.

Observation: An array can be used to represent any binary tree with
the same shape as a heap — “heap order” is not used to define this
representation.

The “Max-Heapify” algorithm, described next, is used to take an array
representation of a binary tree that is “almost” a heap, and convert it
into a heap storing the same multiset.

This is a useful “subroutine” for a variety of more interesting operations
that will be described later.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 3 / 32

Max-Heapify Description

Max-Heapify: Specification of Requirements

Pre-Condition:

A is an array representing a binary tree (with the same shape as a
heap).

i is an integer; 0 ≤ i < heap-size(A) ≤ length(A).
A satisfies all the properties of an array representation of a
max-heap, except that A[i] might be less than

A[left(i)] (if left(i) < heap-size(A)), as well as
A[right(i)] (if right(i) < heap-size(A)).

In particular, if i > 0 then
if left(i) < heap-size(A) then A[parent(i)] ≥ A[left(i)] and
if right(i) < heap-size(A) then A[parent(i)] ≥ A[right(i)].

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 4 / 32



Max-Heapify Description

Max-Heapify: Specification of Requirements

Post-Condition:

The elements stored in A have been reordered but otherwise
unchanged.

Furthermore, A[j] is unchanged for every integer j such that
heap-size(A) ≤ j < length(A).

A represents a max-heap.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 5 / 32

Max-Heapify Description

Max-Heapify: Pseudocode

Max-Heapify (A, i)
{A array, 0 ≤ i < heap-size(A)}
` = left(i); r = right(i); largest = i
if (` < heap-size(A)) and (A[`] > A[i]) then

largest = `
end if
if (r < heap-size(A)) and (A[r ] > A[largest ]) then

largest = r
end if
if largest 6= i then

Swap: tmp = A[i]; A[i] = A[largest ]; A[largest ] = temp
Max-Heapify (A, largest)

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 6 / 32

Max-Heapify Description

Example

Suppose A represents the following binary tree and i = 0.

Note: The pre-condition for “Max-Heapify(A, i)” is satisfied.

7

9 2

16

3

After the initial tests, largest = left(i) = 1.

Values are exchanged and procedure is called with i = 1.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 7 / 32

Max-Heapify Description

Example (i = 1)

Note: Pre-condition for “Max-Heapify(A, i)” is satisfied before this
procedure is called again.

9

3

7

2

16

After the initial tests, largest = left(i) = 3.

Values are exchanged and procedure is called with i = 3.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 8 / 32



Max-Heapify Description

Example (i = 3)

Note: Pre-condition for “Max-Heapify(A, i)” is satisfied before this
procedure is called again.

9

7

3

2

16

The subtree with root at index 3 satisfies the max-heap order property.
A now represents a max-heap.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 9 / 32

Max-Heapify Correctness and Efficiency

Partial Correctness

Theorem 1
Suppose Max-Heapify is called with an array A and integer i such that
the precondition for Max-Heapify is satisfied. Then either Max-Heapify
does not terminate at all, or the following properties are satisfied on
termination:

A stores the values it did before Max-Heap was called. However,
the ordering of these values might have been changed.

A[j] has not been changed for any integer j such that
heap-size(A) ≤ j ≤ length(A).

heap-size(A) has not been changed

A represents a max-heap.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 10 / 32

Max-Heapify Correctness and Efficiency

Proof (induction on height(i))

Proof.
Base case (height(i) = 0):

Inductive case: assume that height(i) = h and that Max-Heapify is
partially correct for all sub-heaps of height < h

Thus, Max-Heapify is partially correct by induction.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 11 / 32

Max-Heapify Correctness and Efficiency

Termination and Efficiency

Theorem 2
Suppose Max-Heapify is called with an input array A and an integer i
such that the precondition of Max-Heapify is satisfied. Then
Max-Heap terminates after performing O(height(i)) operations.

Let T (h) be the number of steps used by Max-Heapify (A, i) in the
worst case when height(i) = h.

T (h) =

The following lemma implies the theorem.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 12 / 32



Max-Heapify Correctness and Efficiency

Termination and Efficiency (proof)

Lemma 3
For all h ≥ 0, T (h) ≤ ch + c where c = max(c0, c1, c2).

Proof (Induction on h).
Base case (h = 0): T (0) = c0 ≤ c(0) + c = c
Base case (h = 1): T (1) = c1 ≤ c(1) + c = 2c
Assume that the lemma holds for all j < h. We have

T (h) = max [T (h − 1), T (h − 2)] + c2

≤ max [c(h − 1) + c, c(h − 2) + c] + c2

< c(h − 1) + c + c2 = ch + c2 ≤ ch + c .

Thus, the result follows by induction.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 13 / 32

Build-Max-Heap Description

Procedure Build-Max-Heap

Objective: Reorganize the elements stored in an array A to produce a
representation of a Max-Heap

Precondition:

A is an array of size n ≥ 1, containing values from some ordered
type

Postcondition:

A represents a heap of size n

Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 14 / 32

Build-Max-Heap Description

Pseudocode

Idea: Use Max-Heapify to impose max heap order on subtrees:

start at last non-leaf node

move up to the root

Build-Max-Heap (A)
{Note length(A) = heap-size(A)}
n = length(A)
i = bn/2c − 1
while i ≥ 0 do

Max-Heapify (A, i)
i = i − 1

end while

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 15 / 32

Build-Max-Heap Description

Example

6

8

3

2

7 4

1 9

0 1 2 3 4 5 6 7
2 7 4 1 6 9 3 8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 16 / 32



Build-Max-Heap Description

Example: i = 3

Max-Heapify (A, 3):

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 17 / 32

Build-Max-Heap Description

Example: i = 2

Max-Heapify (A, 2):

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 18 / 32

Build-Max-Heap Description

Example: i = 1

Max-Heapify (A, 1):

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 19 / 32

Build-Max-Heap Description

Example: i = 0

Max-Heapify (A, 0):

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 20 / 32



Build-Max-Heap Correctness and Efficiency

Partial Correctness

Loop Invariant: If the loop is executed at least k times then after the
k th execution of the loop body,

length(A) = heap-size(A) = n.

i = bn/2c − 1− k , so that i ∈ Z, and −1 ≤ i ≤ bn/2c − 1.
for every integer j such that i + 1 ≤ j ≤ n − 1

if left(j) < n then A[j] ≥ A[left(j)] and
if right(j) < n then A[j] ≥ A[right(j)]

The entries of A have been reordered but are otherwise
unchanged.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 21 / 32

Build-Max-Heap Correctness and Efficiency

Partial Correctness: A Complication

Complication: The pre-condition we have used for “Max-Heapify” is
not satisfied when it is called by “Build-Max-Heap.”

Solution: Notice that “Max-Heapify” also solves a different problem
than the one we first discussed.

The proof that Max-Heapify solves the different (related) problem (that
we need here) is a modification of the original proof of correctness.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 22 / 32

Build-Max-Heap Correctness and Efficiency

Revised Requirements for Max-Heapify

Pre-Condition (for Max-Heapify (A, j)):

A is an array representing a binary tree (with the same shape as a
heap)

i is an integer such that −1 ≤ i ≤ n − 1

j is an integer such that i + 1 ≤ j < n = heap-size(A) = length(A)

for every integer k such that i + 1 ≤ k < n and such that k 6= j :

if left(k) < n then A[k ] ≥ A[left(k)], and
if right(k) < n then A[k ] ≥ A[right(k)].

if parent(j) ≥ i + 1 then
if left(j) < n then A[parent(j)] ≥ A[left(j)], and
if right(j) < n then A[parent(j)] ≥ A[right(j)].

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 23 / 32

Build-Max-Heap Correctness and Efficiency

Partial Correctness: Max-Heapify

Post-Condition:

The elements stored in A have been reordered but otherwise
unchanged.
For every integer k such that i + 1 ≤ k < n :

if left(k) < n then A[k ] ≥ A[left(k)], and
if right(k) < n then A[k ] ≥ A[right(k)].

Theorem 4
Suppose that the revised pre-conditions are satisfied when
Max-Heapify is called with input array A and an integer input j. Then
either Max-Heapify does not terminate or the postconditions are
satisfied.

Method of Proof: Induction on height(j)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 24 / 32



Build-Max-Heap Correctness and Efficiency

Termination and Efficiency: Max-Heapify

Theorem 5
Suppose that the revised pre-conditions are satisfied when
Max-Heapify is called with input array A and an integer input j. Then
Max-Heapify terminates and the number of steps used by this
algorithm is in O(height(j)) in the worst case.

Method of Proof: This proof is virtually identical to the proof of
termination and efficiency of “Max-Heapify” for the original
pre-condition.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 25 / 32

Build-Max-Heap Correctness and Efficiency

Partial Correctness: Build-Max-Heap

Exercises:
1 Modify the original proofs concerning the correctness and

efficiency of “Max-Heapify” to establish the claims concerning the
correctness and efficiency of “Max-Heapify” (with a different
pre-condition) that are given above.

2 Prove the correctness of the loop invariant for “Build-Max-Heap”
that is stated above.

3 Show that i = −1 when the loop for “Build-Max-Heap” terminates.
Use this, with the loop invariant, to prove the partial correctness of
this program.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 26 / 32

Build-Max-Heap Correctness and Efficiency

Termination and Efficiency

Loop Variant: f (n, i) = i + 1

Cost of Loop Body for a Given i :

Number of iterations:

Worst-Case Cost of Build-Max-Heap:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 27 / 32

Delete-Max Description

Procedure Delete-Max

Objective: Remove the largest element from a heap and return its
value.

Precondition:

A is an array of size n ≥ 1 that represents a nonempty Max-Heap

Postcondition:

Largest entry in the heap has been returned as output

A now represents a heap including all of the original elements
except for the one that has been returned

Exception: EmptyHeapException

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 28 / 32



Delete-Max Description

Idea and Pseudocode

Idea: Copy the value from the node that must be deleted to the root,
and use Max-Heapify to restore heap-order. Return the value that was
initially at the root.

Delete-Max (A)
if heap-size(A) > 1 then

largest = A[0]; A[0] = A[heap-size(A)− 1]
heap-size(A) = heap-size(A)− 1; Max-Heapify (A, 0)
return largest

else if heap-size(A) = 1 then
heap-size(A) = 0
return A[0]

else
throw EmptyHeapException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 29 / 32

Delete-Max Description

Example

6 3

1

8

7

9

4

2

0 1 2 3 4 5 6 7
9 8 4 7 6 2 3 1

heap-size(A) = 8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 30 / 32

Delete-Max Description

Example: Output and Resulting Heap

0 1 2 3 4 5 6 7

heap-size(A) =

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 31 / 32

Delete-Max Correctness and Efficiency

Analysis

Partial Correctness:

if heap-size(A) = 0, correct output is returned

precondition implies that A is a Max-Heap, so A[0] is the largest
element
two cases:

Termination and Efficiency:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #25 32 / 32


	Max-Heapify
	Description
	Correctness and Efficiency

	Build-Max-Heap
	Description
	Correctness and Efficiency

	Delete-Max
	Description
	Correctness and Efficiency


