
Computer Science 331
Heap Sort

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #26

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 1 / 16

Outline

1 HeapSort
Description
Correctness and Efficiency

2 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 2 / 16

HeapSort Description

HeapSort

Idea:
1 Use Build-Max-Heap to convert the input array into a

representation of a heap
2 Repeatedly use Delete-Max to extract the largest element in the

unsorted part of the array and move it into position

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 3 / 16

HeapSort Description

Pseudocode

Heap Sort (A)
n = heap-size(A)
if n > 1 then

Build-Max-Heap (A)
i = n − 1
while i > 0 do

largest = Delete-Max (A)
A[i] = largest
i = i − 1

end while
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 4 / 16



HeapSort Description

Example

6

8

3

2

7 4

1 9

0 1 2 3 4 5 6 7
2 7 4 1 6 9 3 8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 5 / 16

HeapSort Description

Example: After Build-Max-Heap

6 3

1

8

7

9

4

2

0 1 2 3 4 5 6 7
9 8 4 7 6 2 3 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 6 / 16

HeapSort Description

A[7] = Delete-Max (A)

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 7 / 16

HeapSort Description

A[6] = Delete-Max (A)

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 8 / 16



HeapSort Description

A[5] = Delete-Max (A)

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 9 / 16

HeapSort Description

A[4] = Delete-Max (A)

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 10 / 16

HeapSort Description

A[3] = Delete-Max (A)

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 11 / 16

HeapSort Description

A[2] = Delete-Max (A)

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 12 / 16



HeapSort Description

A[1] = Delete-Max (A)

0 1 2 3 4 5 6 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 13 / 16

HeapSort Correctness and Efficiency

Partial Correctness

Loop invariant: if the loop is executed at least k times then, after the
k th iteration:

0 ≤ i ≤ n − 1, and i = n − 1− k

heap-size(A) = i + 1 = n − k

A represets a max-heap with size i + 1

the last n − i − 1 entries are all greater than or equal to each of
the first i + 1 entries in A

A[j] ≤ A[j + 1] for i ≤ j ≤ n − 2

the entries of A are reordered but otherwise unchanged

If true and loop terminates, then i = 0 and

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 14 / 16

HeapSort Correctness and Efficiency

Termination and Efficiency

Loop variant: f (n, i) = i

Worst-case cost of heapSort :

Advantage over mergeSort :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 15 / 16

References

References

Textbook, Section 10.8

A simplified presentation: “Max-Heapify” is not separately
analyzed

Build-Max-Heap slightly different (starts at index 0)

Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms,
Second Edition, Chapter 6: A discussion of Heap Sort that is closer to
the presentation in these notes.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 16 / 16


	HeapSort
	Description
	Correctness and Efficiency

	References

