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Introduction

Computation of Min-Cost Spanning Trees

Motivation: Given a set of sites (represented by vertices of a graph),
connect these all as cheaply as possible (using connections
represented by the edges of a weighted graph).

Goal for Today: Presentation of an algorithm to compute a
minimum-cost spanning tree of a graph

Reference:

Introduction to Algorithms, Chapter 23

Text, Section 12.6 (p.666-670), variation without a priority queue
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Min-Cost Spanning Trees

Costs of Spanning Trees in Weighted Graphs

Suppose that (G, w) is a weighted graph.

Let G1 = (V1, E1) be a spanning tree of the undirected graph G.

The cost of G1, w(G1), is the sum of the weights of the edges in G1,
that is,

w(G1) =
∑
e∈E1

w(e).
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Min-Cost Spanning Trees

Example

Suppose G is a weighted graph with weights as shown below.
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Min-Cost Spanning Trees

Example

The cost of the following spanning tree, G1 = (V1, E1), is 8.
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Min-Cost Spanning Trees

Example

The cost of the following spanning tree, G2 = (V2, E2), is 16.
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Min-Cost Spanning Trees

Minimum-Cost Spanning Trees

Suppose (G, w) is a weighted graph.

A subgraph G1 of G is a minimum-cost spanning tree of (G, w) if the
following properties are satisfied.

1 G1 is a spanning tree of G.
2 w(G1) ≤ w(G2) for every spanning tree G2 of G.

Example: In the previous example, G2 is clearly not a minimum-cost
spanning tree, because G1 is a spanning tree of G such that
w(G2) > w(G1).

It can be shown that G1 is a minimum-cost spanning tree
of (G, w).
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Construction

Building a Minimum-Cost Spanning Tree

To construct a minimum-cost spanning tree of (G, w), where
G = (V , E):

1 Start with Ĝ = (V̂ , Ê), where V̂ ⊆ V and Ê = ∅.

Note: Ĝ is a subgraph of some minimum-cost spanning tree of
(G, w).

2 Repeatedly add vertices (if necessary) and edges — ensuring that
Ĝ is still a subgraph of a minimum-cost spanning tree as you do
so.

Continue doing this until V̂ = V and |Ê | = |V | − 1 (so that Ĝ is a
spanning tree of Ĝ).
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Construction

Building a Minimum-Cost Spanning Tree

Additional Notes:

This can be done in several different ways, and there are at least
two different algorithms that use this approach to solve this
problem.

The algorithm to be presented here begins with V̂ = {s} for some
vertex s ∈ V , and makes sure that Ĝ is always a tree.

As a result, this algorithm is structurally very similar to Dijkstra’s
Algorithm to compute minimum-cost paths (which we have already
discussed in class).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #34 10 / 23

Problem and Algorithm

Specification of Requirements

Pre-Condition

G = (V , E) is a connected weighted graph

Post-Condition:

π is a function π : V → V ∪ {NIL}
If

Ê = {(π(v), v) | v ∈ V and π(v) 6= NIL}

then (V , Ê) is a minimum-cost spanning tree for G

The graph G = (V , E) (and its edge-weights) has not been
changed
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Problem and Algorithm

Data Structures

The algorithm (to be presented next) will use a priority queue to store
information about weights of edges that are being considered for
inclusion

The priority queue will be a MinHeap: the entry with the smallest
priority will be at the top of the heap

Each node in the priority queue will store a node in G and the
weight of an edge incident on this node

The weight will be used as the node’s priority

An array-based representation of the priority queue will be used

A second array will be used to locate each entry of the priority queue
for a given node in constant time

Note: The data structures will, therefore, look very much like the data
structures used by Dijkstra’s algorithm.
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Problem and Algorithm

Pseudocode

MST-Prim (G)
for v ∈ V do

colour [v ] = white
d [v ] = +∞
π[v ] = NIL

end for
Initialize the priority queue Q to be empty
Choose some vertex s ∈ V
colour [s] = grey
d [s] = 0
enqueue((s, 0))
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Problem and Algorithm

Pseudocode, Continued

while (Q is not empty) do
(u, d) = extract-min(Q) {Note: d = d [u]}
for each v ∈ Adj[u] do

if (colour [v ] == white) then
d [v ] = w((u, v))
colour [v ] = grey; π[v ] = u
enqueue(v , d [v ])

else if (colour [v ] == grey) then
Update information about v {Shown on next slide}

end if
end for
colour [u] = black

end while
return π
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Problem and Algorithm

Pseudocode, Concluded

Updating Information About v
if (w((u, v)) < d [v ]) then

old = d [v ]
d [v ] = w((u, v))
π[v ] = u
Use Decrease-Key to replace (v , old)
in Q with (v , d [v ])

end if
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Example

Example

Consider the execution of MST-Prim(G, a):
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Example

Example (Step 1)
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Example

Example (Step 2)
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Example

Example (Step 3)
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Example

Example (Step 4)
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Example

Example (Step 5)
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Example

Example (Step 6)
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Example

Example (Step 7)
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