
Computer Science 331

Solutions to Selected Tutorial #5 Questions

Question 1

Use asymptotic notation to state bounds on the worst-case running times for the Bubble Sort
and the gcd algorithms

We have computed the number of operations for the worst-case of the Bubble Sort algorithm in
Tutorial 4, namelyT (n) = 5n2 − 2. We can prove the following claims aboutT (n).

1. T (n) ∈ O(n2). To show this, note that

5n2 − 2 ≤ 5n2

for all n ≥ 1. Thus, the definition of big-O notation is satisfied forc = 5 andN0 = 1.

2. T (n) ∈ Ω(n2). To show this, note that

5n2 − 2 ≥ 4n2

if n2 ≥ 2, or n ≥
√

2. Thus, the definition ofΩ is satisfied forc = 4 andN0 = 2.

3. T (n) ∈ Θ(n2). Follows from the previous two claims.

Notice that the third statement, which says that the growth rate ofT (n) is the same asn2, is as
precise as we can be. Thus, results using little-o andω are not required here.

For thegcd algorithm, we begin by determining the worst-case number of operations

Cost
1 function gcd (a, b: integer)
2 if (a==0) then 1 operation
3 return b
4 elsif (b==0) then 1 operation
5 return a

1



6 else
7 p = abs(a); 1 operation
8 q = abs(b); 1 operation
9 while (q <> 0) do 1 operation

10 r = p mod q; 2 operation
11 p = q; 1 operation
12 q = r; 1 operation
13 end do;
14 return p 1 operation
15 end if
16 end function;

Since we are considering the worst case,a 6= 0 andb 6= 0, and the program enters into the while
loop. To find how many times the while loop executes we have to find a loop variant for this
loop. Following Question 2b of Tutorial 4, we define the size of the input to be the sums of the bit
lengths of p and q and want to show that this function decreases by at least 1 after every iteration
of the loop. The three cases indicated in Question 2b of Tutorial 4 cover all the possibilities for
an iteration of the loop (case 2 involves showing that subtracting two numbers of equal bit length
yields an answer with smaller bit length because the high-order bits will be one, case 2 follows
becauser = p mod q is strictly less thanq). Putting this together, we have that

f(p, q) =

{
log2 p + log2 q if p ≥ q

log2 p + log2 q + 1 if p < q.

serves as a loop variant. The second case is required to ensure that the value off(p, q) decreases
after the first iteration, because ifp < q, thenr = p and we just swapp andq. The arguments
from Question 2b show thatf(p, q) decreases by at least one after each iteration so, in the worst
case wheregcd(p, q) = 1, we’ll havef(p, q) = 0 whenp = 1 andq = 0, implying that the loop
terminates. As a result, the number of iterations (found by plugging in the initial values ofp andq)
will be at most

(log2 p) + (log2 q) + 1 ≤ 2(log2 q) + 1

since the worst case occurs whenp < q.

To count the worst-case number of operations, we note that the loop body costs4 steps, the while-
loop test costs1 operation, and5 steps are required for initialization before the loop and termination
of the function. Thus, the total worst case number of operationsT (q) satisfies

T (q) ≤ 5 + (1)(2 + 2 log2 q) + (4)(1 + 2 log2 q)
= 11 + 10 log2 q .

We can prove the following aboutT (q).

2



1. T (q) ∈ O(log2 q). To show this, note that

11 + 10 log2 q ≤ 11 log2 q + 10 log2 q = 21 log2 q

if log2 q ≥ 1, or q ≥ 2. Thus, the definition of big-O is satisfied forc = 21 andN0 = 2.

2. T (q) ∈ Ω(log2 q). To show this, note that

11 + 10 log2 q ≥ 10 log2 q

if log2 q ≥ 0, or q ≥ 1. Thus, the definition ofΩ is satisfied forc = 10 andN0 = 1.

3. T (q) ∈ Θ(log2 q). Follows from the previous two claims.

Question 2d

To prove thatx ∈ o(x2), we need to show that for every constantc > 0, there exists a constant
N0 ≥ 0 such thatx ≤ cx2. Note that we havex ≤ cx2 wheneverx ≥ 1/c, so for every constantc,
the definition is satisfied withN0 = 1/c.

Question 3

a: Prove that 2x3 + 4 ∈ Θ(x3)

First, note that
2x3 + 4 ≤ 2x3 + 4x3 = 6x3

if x3 ≥ 1, or x ≥ 1. Also, note that
2x3 + 4 ≥ 2x3

also holds ifx ≥ 1. Thus, we have

0 ≤ cLx3 ≤ 2x3 + 4 ≤ cUx3 for x ≥ N0

holds forcL = 2, cU = 6, andN0 = 1, and by definition2x3 + 4 ∈ Θ(x3).

b: Prove that 2x3 + 4 /∈ O(x2)

Assume that2x3 + 4 ∈ O(x2). By definition there exist constantsc > 0 andN0 ≥ 0 such that

2x3 + 4 ≤ cx2

for x ≥ N0. As 2x3 < 2x3 + 4 for x ≥ 0 we have

2x3 ≤ cx2 .

Dividing both sides byx2 yields
2x ≤ c

for all x ≥ N0, a contradiction. Thus, our assumption that2x3 + 4 ∈ O(x2) must be false.

3



c: Prove that 2x2 /∈ ω(x2)

Assume that2x2 ∈ ω(x2). By definition, for every constantc > 0, there exists a constantN0 ≥ 0
such that

2x2 ≥ cx2

for all x ≥ N0. Dividing both sides byx2 implies that for every constantc > 0 we have

2 ≥ c ,

a contradiction. Thus, our assumption that2x2 ∈ ω(x2) must be false.

Question 6.a

If f(n) ∈ Θ(g(n)), then by definition there exist constantscL, cU > 0 andN0 ≥ 0 such that
0 ≤ cLg(n) ≤ f(n) ≤ cUg(n) for all n ≥ N0. To show thatg(n) ∈ Θ(f(n)) we need to show
that there exist constantsc′

L, c′
U > 0 andN ′

0 ≥ 0 such that0 ≤ c′
Lf(n) ≤ g(n) ≤ c′

Uf(n) for all
n ≥ N0.

• By assumption we have thatf(n) ≤ cUg(n) for all n ≥ N0. Thus,g(n) ≥ (1/cU )f(n) for
all n ≥ N0.

• By assumption we have thatf(n) ≥ cLg(n) for all n ≥ N0. Thus,g(n) ≤ (1/cL)f(n) for
all n ≥ N0.

Hence, we can takec′
L = 1/cU , c′

U = 1/cL, andN ′
0 = N0, and by definitiong(n) ∈ Θ(f(n)).

4


