Computer Science 331

Solutions to Selected Tutorial \#5 Questions

Question 1

Use asymptotic notation to state bounds on the worst-case running times for the Bubble Sort and the ged algorithms

We have computed the number of operations for the worst-case of the Bubble Sort algorithm in Tutorial 4, namely $T(n)=5 n^{2}-2$. We can prove the following claims about $T(n)$.

1. $T(n) \in O\left(n^{2}\right)$. To show this, note that

$$
5 n^{2}-2 \leq 5 n^{2}
$$

for all $n \geq 1$. Thus, the definition of big- O notation is satisfied for $c=5$ and $N_{0}=1$.
2. $T(n) \in \Omega\left(n^{2}\right)$. To show this, note that

$$
5 n^{2}-2 \geq 4 n^{2}
$$

if $n^{2} \geq 2$, or $n \geq \sqrt{2}$. Thus, the definition of Ω is satisfied for $c=4$ and $N_{0}=2$.
3. $T(n) \in \Theta\left(n^{2}\right)$. Follows from the previous two claims.

Notice that the third statement, which says that the growth rate of $T(n)$ is the same as n^{2}, is as precise as we can be. Thus, results using little- o and ω are not required here.

For the gcd algorithm, we begin by determining the worst-case number of operations

Cost
1 function gcd (a, b: integer) if $(a==0)$ the
return b elsif ($b==0$) then
return a

1 operation

1 operation

6	else	
7	$\mathrm{p}=\mathrm{abs}(\mathrm{a})$;	1 operation
8	$\mathrm{q}=\mathrm{abs}(\mathrm{b})$;	1 operation
9	while (q <> 0) do	1 operation
10	$r=p \bmod q ;$	2 operation
11	$\mathrm{p}=\mathrm{q} ;$	1 operation
12	$q=r ;$	1 operation
13	end do;	
14	return p	1 operation
15	end if	
	function;	

Since we are considering the worst case, $a \neq 0$ and $b \neq 0$, and the program enters into the while loop. To find how many times the while loop executes we have to find a loop variant for this loop. Following Question 2 b of Tutorial 4, we define the size of the input to be the sums of the bit lengths of p and q and want to show that this function decreases by at least 1 after every iteration of the loop. The three cases indicated in Question 2b of Tutorial 4 cover all the possibilities for an iteration of the loop (case 2 involves showing that subtracting two numbers of equal bit length yields an answer with smaller bit length because the high-order bits will be one, case 2 follows because $r=p \bmod q$ is strictly less than q). Putting this together, we have that

$$
f(p, q)= \begin{cases}\log _{2} p+\log _{2} q & \text { if } p \geq q \\ \log _{2} p+\log _{2} q+1 & \text { if } p<q .\end{cases}
$$

serves as a loop variant. The second case is required to ensure that the value of $f(p, q)$ decreases after the first iteration, because if $p<q$, then $r=p$ and we just swap p and q. The arguments from Question 2 b show that $f(p, q)$ decreases by at least one after each iteration so, in the worst case where $\operatorname{gcd}(p, q)=1$, we'll have $f(p, q)=0$ when $p=1$ and $q=0$, implying that the loop terminates. As a result, the number of iterations (found by plugging in the initial values of p and q) will be at most

$$
\left(\log _{2} p\right)+\left(\log _{2} q\right)+1 \leq 2\left(\log _{2} q\right)+1
$$

since the worst case occurs when $p<q$.
To count the worst-case number of operations, we note that the loop body costs 4 steps, the whileloop test costs 1 operation, and 5 steps are required for initialization before the loop and termination of the function. Thus, the total worst case number of operations $T(q)$ satisfies

$$
\begin{aligned}
T(q) & \leq 5+(1)\left(2+2 \log _{2} q\right)+(4)\left(1+2 \log _{2} q\right) \\
& =11+10 \log _{2} q .
\end{aligned}
$$

We can prove the following about $T(q)$.

1. $T(q) \in O\left(\log _{2} q\right)$. To show this, note that

$$
11+10 \log _{2} q \leq 11 \log _{2} q+10 \log _{2} q=21 \log _{2} q
$$

if $\log _{2} q \geq 1$, or $q \geq 2$. Thus, the definition of big- O is satisfied for $c=21$ and $N_{0}=2$.
2. $T(q) \in \Omega\left(\log _{2} q\right)$. To show this, note that

$$
11+10 \log _{2} q \geq 10 \log _{2} q
$$

if $\log _{2} q \geq 0$, or $q \geq 1$. Thus, the definition of Ω is satisfied for $c=10$ and $N_{0}=1$.
3. $T(q) \in \Theta\left(\log _{2} q\right)$. Follows from the previous two claims.

Question 2d

To prove that $x \in o\left(x^{2}\right)$, we need to show that for every constant $c>0$, there exists a constant $N_{0} \geq 0$ such that $x \leq c x^{2}$. Note that we have $x \leq c x^{2}$ whenever $x \geq 1 / c$, so for every constant c, the definition is satisfied with $N_{0}=1 / c$.

Question 3

a: Prove that $2 x^{3}+4 \in \Theta\left(x^{3}\right)$
First, note that

$$
2 x^{3}+4 \leq 2 x^{3}+4 x^{3}=6 x^{3}
$$

if $x^{3} \geq 1$, or $x \geq 1$. Also, note that

$$
2 x^{3}+4 \geq 2 x^{3}
$$

also holds if $x \geq 1$. Thus, we have

$$
0 \leq c_{L} x^{3} \leq 2 x^{3}+4 \leq c_{U} x^{3} \quad \text { for } x \geq N_{0}
$$

holds for $c_{L}=2, c_{U}=6$, and $N_{0}=1$, and by definition $2 x^{3}+4 \in \Theta\left(x^{3}\right)$.
b: Prove that $2 x^{3}+4 \notin O\left(x^{2}\right)$
Assume that $2 x^{3}+4 \in O\left(x^{2}\right)$. By definition there exist constants $c>0$ and $N_{0} \geq 0$ such that

$$
2 x^{3}+4 \leq c x^{2}
$$

for $x \geq N_{0}$. As $2 x^{3}<2 x^{3}+4$ for $x \geq 0$ we have

$$
2 x^{3} \leq c x^{2}
$$

Dividing both sides by x^{2} yields

$$
2 x \leq c
$$

for all $x \geq N_{0}$, a contradiction. Thus, our assumption that $2 x^{3}+4 \in O\left(x^{2}\right)$ must be false.
c: Prove that $2 x^{2} \notin \omega\left(x^{2}\right)$
Assume that $2 x^{2} \in \omega\left(x^{2}\right)$. By definition, for every constant $c>0$, there exists a constant $N_{0} \geq 0$ such that

$$
2 x^{2} \geq c x^{2}
$$

for all $x \geq N_{0}$. Dividing both sides by x^{2} implies that for every constant $c>0$ we have

$$
2 \geq c
$$

a contradiction. Thus, our assumption that $2 x^{2} \in \omega\left(x^{2}\right)$ must be false.

Question 6.a

If $f(n) \in \Theta(g(n))$, then by definition there exist constants $c_{L}, c_{U}>0$ and $N_{0} \geq 0$ such that $0 \leq c_{L} g(n) \leq f(n) \leq c_{U} g(n)$ for all $n \geq N_{0}$. To show that $g(n) \in \Theta(f(n))$ we need to show that there exist constants $c_{L}^{\prime}, c_{U}^{\prime}>0$ and $N_{0}^{\prime} \geq 0$ such that $0 \leq c_{L}^{\prime} f(n) \leq g(n) \leq c_{U}^{\prime} f(n)$ for all $n \geq N_{0}$.

- By assumption we have that $f(n) \leq c_{U} g(n)$ for all $n \geq N_{0}$. Thus, $g(n) \geq\left(1 / c_{U}\right) f(n)$ for all $n \geq N_{0}$.
- By assumption we have that $f(n) \geq c_{L} g(n)$ for all $n \geq N_{0}$. Thus, $g(n) \leq\left(1 / c_{L}\right) f(n)$ for all $n \geq N_{0}$.

Hence, we can take $c_{L}^{\prime}=1 / c_{U}, c_{U}^{\prime}=1 / c_{L}$, and $N_{0}^{\prime}=N_{0}$, and by definition $g(n) \in \Theta(f(n))$.

