Computer Science 331 Solutions to Selected Tutorial #5 Questions

Question 1

Use asymptotic notation to state bounds on the worst-case running times for the Bubble Sort and the gcd algorithms

We have computed the number of operations for the worst-case of the Bubble Sort algorithm in Tutorial 4, namely $T(n) = 5n^2 - 2$. We can prove the following claims about T(n).

1. $T(n) \in O(n^2)$. To show this, note that

$$5n^2 - 2 \le 5n^2$$

for all $n \ge 1$. Thus, the definition of big-O notation is satisfied for c = 5 and $N_0 = 1$.

2. $T(n) \in \Omega(n^2)$. To show this, note that

$$5n^2 - 2 > 4n^2$$

if $n^2 \ge 2$, or $n \ge \sqrt{2}$. Thus, the definition of Ω is satisfied for c = 4 and $N_0 = 2$.

3. $T(n) \in \Theta(n^2)$. Follows from the previous two claims.

Notice that the third statement, which says that the growth rate of T(n) is the same as n^2 , is as precise as we can be. Thus, results using little-*o* and ω are not required here.

For the gcd algorithm, we begin by determining the worst-case number of operations

Cost

1	function gcd (a, b: integer)	
2	if $(a==0)$ then	1 operation
3	return b	
4	elsif (b==0) then	1 operation
5	return a	

```
else
 6
 7
          p = abs(a);
                                         1 operation
 8
          q = abs(b);
                                         1 operation
 9
          while (q <> 0) do
                                         1 operation
10
                r = p \mod q;
                                         2 operation
11
                                         1 operation
                p = q;
12
                q = r;
                                         1 operation
            end do;
13
14
            return p
                                         1 operation
15
       end if
16 end function;
```

Since we are considering the worst case, $a \neq 0$ and $b \neq 0$, and the program enters into the while loop. To find how many times the while loop executes we have to find a loop variant for this loop. Following Question 2b of Tutorial 4, we define the size of the input to be the sums of the bit lengths of p and q and want to show that this function decreases by at least 1 after every iteration of the loop. The three cases indicated in Question 2b of Tutorial 4 cover all the possibilities for an iteration of the loop (case 2 involves showing that subtracting two numbers of equal bit length yields an answer with smaller bit length because the high-order bits will be one, case 2 follows because $r = p \mod q$ is strictly less than q). Putting this together, we have that

$$f(p,q) = \begin{cases} \log_2 p + \log_2 q & \text{if } p \ge q \\ \log_2 p + \log_2 q + 1 & \text{if } p < q. \end{cases}$$

serves as a loop variant. The second case is required to ensure that the value of f(p,q) decreases after the first iteration, because if p < q, then r = p and we just swap p and q. The arguments from Question 2b show that f(p,q) decreases by at least one after each iteration so, in the worst case where gcd(p,q) = 1, we'll have f(p,q) = 0 when p = 1 and q = 0, implying that the loop terminates. As a result, the number of iterations (found by plugging in the initial values of p and q) will be at most

$$(\log_2 p) + (\log_2 q) + 1 \le 2(\log_2 q) + 1$$

since the worst case occurs when p < q.

To count the worst-case number of operations, we note that the loop body costs 4 steps, the whileloop test costs 1 operation, and 5 steps are required for initialization before the loop and termination of the function. Thus, the total worst case number of operations T(q) satisfies

$$T(q) \le 5 + (1)(2 + 2\log_2 q) + (4)(1 + 2\log_2 q)$$

= 11 + 10 log₂ q .

We can prove the following about T(q).

1. $T(q) \in O(\log_2 q)$. To show this, note that

 $11 + 10\log_2 q \le 11\log_2 q + 10\log_2 q = 21\log_2 q$

if $\log_2 q \ge 1$, or $q \ge 2$. Thus, the definition of big-O is satisfied for c = 21 and $N_0 = 2$.

2. $T(q) \in \Omega(\log_2 q)$. To show this, note that

$$11 + 10\log_2 q \ge 10\log_2 q$$

if $\log_2 q \ge 0$, or $q \ge 1$. Thus, the definition of Ω is satisfied for c = 10 and $N_0 = 1$.

3. $T(q) \in \Theta(\log_2 q)$. Follows from the previous two claims.

Question 2d

To prove that $x \in o(x^2)$, we need to show that for every constant c > 0, there exists a constant $N_0 \ge 0$ such that $x \le cx^2$. Note that we have $x \le cx^2$ whenever $x \ge 1/c$, so for every constant c, the definition is satisfied with $N_0 = 1/c$.

Question 3

a: Prove that $2x^3 + 4 \in \Theta(x^3)$

First, note that

$$2x^3 + 4 < 2x^3 + 4x^3 = 6x^3$$

if $x^3 \ge 1$, or $x \ge 1$. Also, note that

$$2x^3 + 4 \ge 2x^3$$

also holds if $x \ge 1$. Thus, we have

$$0 \le c_L x^3 \le 2x^3 + 4 \le c_U x^3 \quad \text{for } x \ge N_0$$

holds for $c_L = 2$, $c_U = 6$, and $N_0 = 1$, and by definition $2x^3 + 4 \in \Theta(x^3)$.

b: Prove that $2x^3 + 4 \notin O(x^2)$

Assume that $2x^3 + 4 \in O(x^2)$. By definition there exist constants c > 0 and $N_0 \ge 0$ such that $2x^3 + 4 \le cx^2$

for $x \ge N_0$. As $2x^3 < 2x^3 + 4$ for $x \ge 0$ we have

$$2x^3 \le cx^2$$
 .

Dividing both sides by x^2 yields

$$2x \le c$$

for all $x \ge N_0$, a contradiction. Thus, our assumption that $2x^3 + 4 \in O(x^2)$ must be false.

c: Prove that $2x^2 \notin \omega(x^2)$

Assume that $2x^2 \in \omega(x^2)$. By definition, for every constant c > 0, there exists a constant $N_0 \ge 0$ such that

$$2x^2 \ge cx^2$$

for all $x \ge N_0$. Dividing both sides by x^2 implies that for every constant c > 0 we have

 $2 \geq c$,

a contradiction. Thus, our assumption that $2x^2 \in \omega(x^2)$ must be false.

Question 6.a

If $f(n) \in \Theta(g(n))$, then by definition there exist constants $c_L, c_U > 0$ and $N_0 \ge 0$ such that $0 \le c_L g(n) \le f(n) \le c_U g(n)$ for all $n \ge N_0$. To show that $g(n) \in \Theta(f(n))$ we need to show that there exist constants $c'_L, c'_U > 0$ and $N'_0 \ge 0$ such that $0 \le c'_L f(n) \le g(n) \le c'_U f(n)$ for all $n \ge N_0$.

- By assumption we have that $f(n) \leq c_U g(n)$ for all $n \geq N_0$. Thus, $g(n) \geq (1/c_U)f(n)$ for all $n \geq N_0$.
- By assumption we have that $f(n) \ge c_L g(n)$ for all $n \ge N_0$. Thus, $g(n) \le (1/c_L)f(n)$ for all $n \ge N_0$.

Hence, we can take $c'_L = 1/c_U$, $c'_U = 1/c_L$, and $N'_0 = N_0$, and by definition $g(n) \in \Theta(f(n))$.