
Computer Science 331

Solutions to Selected Tutorial #2 Questions

Question 3

Requirements specification forgcd method

gcd(int a, int b)

• pre-condition:a andb are of typeint

• responsibilities: compute the greatest common divisor of integersa andb using the Euclidean
algorithm, where we define

gcd(a, b) =


a if b = 0
b if a = 0
gcd(|a|, |b|) if a < 0 or b < 0
gcd(a, b) otherwise

• post-condition:a andb are unmodified

• returns:gcd(a, b)

• exceptions: none (The calling program may verify that the values passed to this function are
of type int , but thegcd function itself does not need to check this. The type-check thata
andb are of typeint is handled by the compiler, so it is not possible fora andb to be of any
other type inside this function.)

Question 4

Develop Black Box Tests

Given just the specifications, it is possible to develop many good boundary and typical test cases,
some of which are listed here:

1

1. Verify that the algorithm works whena = 0 (boundary condition)

• Input: a = 0, b = 31

• Expected Output:31.

2. Verify that the algorithm works whenb = 0 (boundary condition)

• Input: a = 43, b = 0

• Expected Output:43.

3. Verify that the algorithm works whena = 1 (boundary condition)

• Input: a = 1, b = 31

• Expected Output:1.

4. Verify that the algorithm works whenb = 1 (boundary condition)

• Input: a = 43, b = 1

• Expected Output:1.

5. Verify that the algorithm works whena = b (boundary condition)

• Input: a = 31, b = 31

• Expected Output:31.

6. Verify that the algorithm works with typical positive inputs witha > b andgcd(a, b) = 1
(typical case)

• Input: a = 43, b = 31

• Expected Output:1.

7. Verify that the algorithm works with typical positive inputs withb > a andgcd(a, b) = 1
(typical case)

• Input: a = 31, b = 43

• Expected Output:1.

8. Verify that the algorithm works with typical inputs witha < 0, |a| > b andgcd(a, b) = 1
(typical case)

• Input: a = −103, b = 101

• Expected Output:1.

9. Verify that the algorithm works with typical inputs witha < 0, b > |a| andgcd(a, b) = 1
(typical case)

2

• Input: a = −101, b = 103

• Expected Output:1.

10. Verify that the algorithm works with typical inputs withb < 0, a > |b| andgcd(a, b) = 1
(typical case)

• Input: a = 355, b = −134

• Expected Output:1.

11. Verify that the algorithm works with typical inputs withb < 0, |b| > a andgcd(a, b) = 1
(typical case)

• Input: a = 134, b = −355

• Expected Output:1.

12. Verify that the algorithm works with typical negative inputs with|a| > |b| andgcd(a, b) = 1
(typical case)

• Input: a = −122, b = −99

• Expected Output:1.

13. Verify that the algorithm works with typical negative inputs with|b| > |a| andgcd(a, b) = 1
(typical case)

• Input: a = −99, b = −122

• Expected Output:1.

14. Verify that the algorithm works with typical positive inputs witha > b andgcd(a, b) 6= 1
(typical case)

• Input: a = 781, b = 737

• Expected Output:11.

15. Verify that the algorithm works with typical positive inputs withb > a andgcd(a, b) 6= 1
(typical case)

• Input: a = 2067, b = 23829

• Expected Output:39.

16. Verify that the algorithm works with typical large positive inputs withb > a andgcd(a, b) =
1 (typical case)

• Input: a = 1073741827, b = 1610612741

• Expected Output:1.

3

17. Verify that the algorithm works with typical large positive inputs witha > b andgcd(a, b) 6=
1 (typical case)

• Input: a = 1342177295, b = 1006633185

• Expected Output:5.

18. Verify that the algorithm works with the largest possible positive inputs witha > b (boundary
case)

• Input: a = 2147483647, b = 2147483646

• Expected Output:1.

19. Verify that the algorithm works with the largest possible negative inputs with|b| > |a|
(boundary case)

• Input: a = −2147483646, b = −2147483647

• Expected Output:1.

Question 5

Write Some Code

/**
* Calculates the greatest common divisor of a and b
* using the Euclidean algorithm.
* We define
* GCD (0, a) or GCD (a, 0) = a, and
* GCD (a, b) = GCD (|a|, |b|) if a < 0 or b < 0.
*
* @param a An integer.
* @param b Another integer.
* @return GCD(a,b)
*/

public static int gcd (int a, int b)
{

/* Test if either argument is 0 */
if (a == 0)

return (b);
else if (b == 0)

return (a);
else
{

4

/* Take absolute values of a and b */
int p = Math.abs (a);
int q = Math.abs (b);

/* Euclidean algorithm */
while (q != 0)
{

int r = p \% q;
p = q;
q = r;

}

/* Return GCD */
return (p);

}
}

Question 6

Develop White Box Tests

Here, we need to ensure that we have test cases for which every line of code will be executed, every
execution path will be taken, and multiple possibilities for the number of iterations of the loop will
occur. The following test cases, developed by looking at the code listing from the previous question,
may be used.

1. The first return statement is executed.

• Test Case 1 from the black box cases covers this (any test witha = 0 will work).

2. The second return statement is executed.

• Test Case 2 from the black box cases covers this (any test withb = 0 will work).

3. The while-loop body executes0 times.

• Not possible, because the function would take the second return statement ifq = |b| is
zero.

4. The while-loop body executes1 time. (Any inputs for whichb dividesa will work here.)

• Input: a = 35, b = 5

• Expected Output:5

5

5. Cases for which the while-loop body executes multiply (and many) times are covered by the
black-box tests.

6

