Computer Science 331

Analysis of Prim’s Algorithm: Proof of a Key Lemma

1 Introduction

Consider the algorithm to find a minimum-cost spanning tree that was presented and
analyzed during the last full week of classes. Recall that if G = (V,E) is a a weighted
undirected graph that is given as input and G is connected then, following an initialization
step, this algorithm uses a priority queue to choose vertices and edges that should be added
to a subgraph

Gy = (Vp,Ep)

of the input graph G. As documented in the lecture notes on the analysis of this algorithm,
it is reasonably easy to establish that each of the following properties is satisfied after both
the beginning and end of each execution of the body of the while loop that makes up the
second part of this algorithm:

e Gy is a tree.

e Gy, is a subgraph of some spanning tree T of G.

The objective of this handout is to provide a proof of the next major property (that is not
quite so easy to establish).

e Gy, is a subgraph of some minimum-cost spanning tree T of G.

The proof of this claim will proceed by induction on the number of executions of the body
of the while loop that have taken place, so far.

2 Basis

One can see, by an examination of the code, that Vy = () and E, = () immediately before
the first execution of the body of the while loop, while Vy, = {s} and Ey = () immediately
after this execution of the loop body for some vertex s € V.

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_33.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

In each case, since G, = (Vp, Ep) does not include any edges at all, it is clear that Gy, is a
subgraph of every spanning tree of G,. In particular, Gy is a subgraph of every minimum-
cost spanning tree of G and (since there are only finitely many spanning trees, so that one
must have minimal cost), at least one minimum-cost spanning tree T of G does exist.

3 Inductive Step

3.1 Notation

Suppose now that £ > 1 and that the subgraph G, = (Vy,Ep) produced after k executions
of the body of the while loop is a subgraph of some minimum-cost spanning tree T of G.

Suppose, as well, that the body of the loop is executed (at least) one more time. Then,
of course, Gy is also the subgraph that has been produced at the beginning of the k + 15
execution of the loop body. Let

Gy = (Vy, Ey)

be the graph that is produced after the k + 15t execution of the loop body.

3.2 Proof that the New Graph is a Subgraph
In this case, one can see by inspection of the code that
V=V U {v} (1)
for some vertex v such that v ¢ Vy, and
Ep =Ep U {(u,v)} (2)

for some vertex u € V. In particular, u = 7(v). As noted during the discussion of this
algorithm in class, one can show (without too much trouble) that (w(v),v) € E and = (v) is
black at this point in the computation, so that 7(v) € V,, and G}, is a subgraph of G.

3.3 Proof that the New Graph is a Subgraph of a Minimum-Cost Span-
ning Tree

In order to complete this proof it is necessary and sufficient to show that there exists a
minimum-cost spanning tree T' of G such that G{ is a subgraph of T'.

Two cases can be identified and should be considered: Either the edge (u,v) is an edge
in T or it is not.

3.3.1 Case: The New Edge is Included in the Current Spanning Tree

Suppose that the edge (u,v) is an edge in T. Then, since every vertex in V is included in T
and every edge in Ep, is included in T (because G, is a subgraph of T), it follows by the
definition of E (given at line (2), above) that G is a subgraph of T in this case.

It therefore suffices to set T = T in this case in order to complete the proof.

3.3.2 Case: The New Edge is Not Included in the Current Spanning Tree

Suppose, instead, that the edge (u,v) is not an edge in T. Recall again that, since T is a
spanning tree of G, T includes all the vertices that G does; let

T = (V,Er) (3)
and consider the graph
U= (V,Ey) where Ey = Er U {(u, v)}. (4)

Claim 1. U is a subgraph of G that contains a cycle.

Proof. First, note that U includes the same set of vertices as G. Since E; C E (because T is
a subgraph of G) and since (u,v) € E, Ey C E, so that U is a subgraph of G.

It follows by Corollary 5 in the lecture notes on Trees, Spanning Trees, and Subgraphs
that, since T is a spanning tree of G, |[Er| = |V| — 1.

Now, since (u, v) ¢ Eg it follows by the definition of U, given at line (4) above, that U includes
V| vertices and (|V| — 1) + 1 = |V| edges. It follows by Lemma 4 in the above set of notes
that U contains a cycle, as claimed.]

Claim 2. U contains a cycle that includes the edge (u, v).

Proof. 1t follows by Claim 1, above, that U includes some cycle
(u1,u9), (ug,u3), ..., (ag_1,ux), (ug,uy).
Suppose that the edge (u, v) is not one of these edges; then, since
Ey =Er U {(u,v)}

it follows that each of the edges (u;,u;+1) (for 1 < i < k — 1) and (ug,u;) belongs to the
set Er. Thus the above cycle is also a cycle in T — which is impossible, since T is a tree.

Thus the edge (u,v) is included the above cycle, so that U has a cycle including the
edge (u,v), as claimed. O

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_29.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_29 .pdf

Notice that, when listing the sequence of vertices in any cycle, we may begin with any one
of the vertices that are be listed. Reversing the order of the listing of vertices (which is
also possible for an undirected graph), if necessary, we may now assume, by an application
of Claim 2, that U includes a cycle

(ul,ug),(u2,u3),...,(uk,l,uk),(uk,ul) (5)

such that v =u; and u = uy. Recall that, since this is a cycle, £ > 3. We may also assume
(by considering the shortest cycle that begins with v and u) that the vertices uy,ug, ..., uk
are distinct that is, this is a “simple cycle.”

Consider the colours of the vertices in this cycle at the beginning of the k + 15 execution
of the body of the loop: u; = v is grey at this point because v is stored on the priority
queue and, as discussed in the analysis of the algorithm, ug = u = 7(v) is a black node at
this point.

Recall as well that the neighbours of all black nodes are either black or grey.

Considering the colours of each of the vertices uz,u4,... in turn, until a grey vertex is
found, we see that exactly one of the following two cases must apply. Vertices w and x will
be defined in each case.

1. The vertex u; is black for 2 < ¢ < k, so that v = u; is the only grey node in this
cycle. Let w = u; and let x = u; = v in this case.

2. There exists an integer £ such that 3 < /¢ <k, u; is black for 2 < j < /-1, and such
that uy is grey. Let w =u, ; and let x = uy in this case.

Claim 3. The vertices w and z satisfy each of the following properties.

(a) The vertex w is black at the beginning of the k + 1°¢ execution of the body of the
while loop.

(b) The vertez z is grey at the beginning of the k+ 1t execution of the body of the while
loop.
(¢) The edge (w,) is not an edge in G,. That is, (w, z) ¢ E,.

Proof. Properties (a) and (b) are easily established by a consideration of the definition of w
and x in each of the two cases that are listed above.

Suppose that the first case is applicable, so that x = u; = v and w = ug. Since uy,uo, ..., u
are distinct, £ > 3, u = uy and w = ug, w # u.

Now notice that, since v is being added to the set of vertices to be included in the tree G
during this execution of the loop body (at the same time as the edge (u, v) is being added),

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

the degree of v in Gi is one and u is the only neighbour of v in G. Since w # u w cannot
be a neighbour of v in G as well, so the edge (w,v) (which is the same as the edge (w,x))
does not belong to Gy. That is, property (c) holds.

Suppose, instead, that the second case is applicable. In this case x = uy is a grey node
that is different from v. Since x is grey at this point x ¢ Vy, and x # v, so x ¢ V. It is
clearly impossible for (w,x) to belong to G in this case. Thus property (c) also holds in
this case as well.]

We are now ready to define the minimum-cost spanning tree T' that will be used to complete
the proof for this case: Let

T'=(V,Er) where Ep = (Er \ {(w,x)}) U{(u,v)} (6)

That is, the edges in T’ are all of the edges in T except for (w,x), together with the new
edge (u,v).

Claim 4. T is a subgraph of G with |V| vertices and |V — 1 edges.

Proof. 1t is clear by inspection of the definitions of T' and U (at lines (6) and (4), respec-
tively) that T’ is a subgraph of U. Since U is a subgraph of G it is easy to show that T’ is a
subgraph of G as well.

Since the set of vertices in T is V it is clear that there |V| edges in T'.

To see that the number of edges in T’ is |V| — 1, note first that, since (u,v) is an edge in Gy,
while (w,x) is not an edge in this graph, the edges (u,w) and (w,x) are clearly distinct. It
follows that (w,x) is an edge in T, since this is an edge in U (by the choice of w and x) and
since (u,v) is the only edge in U that is not also an edge in T. That is, (w,x) € Er.

On the other hand, (u,v) ¢ Er under the case that we are now considering.

It now follows by the definition of T' at line (6) that
[Ex[| = ([Ex[= 1) +1 = [Eq],

and |Er| = |V| — 1 since T is a spanning tree of G. O

Claim 5. T is a connected graph.

Proof. 1t is necessary and sufficient to prove that there is a path from y to z consisting of
edges in T' for each pair of distinct vertices y,z € V.

Note that, since T is a spanning tree of G, T is connected and includes the same set of
vertices as T, so there is a path

y=wy,w2,...,Wp =2 (7)

from y to z in T. That is, (w;,w;+1) € Ep for 1 <i < h — 1. We may also assume that this
is a “simple path,” that is, wi,ws,...,wy, are distinct.

Now, either the edge (w,x) is included in the above path, or it is not. These cases will be
considered separately.

Case: (w,x) is included in the above path: Recall that (w,x) is one of the edges included
in the cycle

uj,u9,...,U;
in the graph U that is introduced at line (5), above, and that all the edges in this cycle are
distinct. Since (w,x) is the only edge included in U that is not also included in T', all of the
other edges in this cycle can be used to form a path between w and x in T'.

A path from y to z in T can now be formed from the path shown at line (7) by replacing
each occurrence of the edge (w,x) with the path between w and x in T’ (in the appropriate
direction) that has just been described.

Case: (w,x) is not included in the above path: In this case, each edge in this path is an
edge included in T/, so that the path shown at line (7) is a path from y to z in T'.

Since y and z were arbitrarily chosen from V it follows that T’ is connected, as claimed. [

Claim 6. T is a tree.

Proof. This follows directly from Claims 4, 5, and from Lemma 7 in the online lecture
notes on Trees, Spanning Trees, and Subgraphs. O

Claim 7. T is a spanning tree of G.

Proof. T' is a subgraph of G, by Claim 4. This subgraph is a tree, by Claim 6, and it
includes all the vertices in G. It is therefore a spanning tree of G. U

Claim 8. w((w,z)) > w((u, v)).

Proof. Recall that w and x were defined in one of two ways, depending on the location of w
in the cycle
up,ug,...,U%
in U introduced at line (5) above. Each of these will be considered separately.
Case: x =u; = v and w = u; # up = uw: Recall, from the analysis of this algorithm that
!
a((a,v)) =atvl = mip %((7,).

colour[y] =black
(y, v)EE

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_29.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

It follows by the choice of w (as described above) that the colour of w is black at the
beginning of the k+ 15 execution of the body of the while loop and that (w,v) = (w,x) € E.
It therefore follows by the above relationship that

w((u,v)) =dlv] = dlw] <w((w,x)),

as desired.

Case: w=uy_q and x = uy where 3 </ < k. Recall that w is a black node and that x is
a grey node that is different from v, at the beginning of the k + 15* execution of the body
of the while loop, in this case.

Note that w((u,v)) = d[v] in this case (and, for the same reason) once again. Since the
element v is removed from the priority queue at the beginning of this execution of the body
of the loop (with priority d[v] at this point), and since x is also stored on the priority
queue with priority d[x], but not removed at this point, it is clear that d[v] < d[x].

Finally, it follows by the notes on the analysis of this algorithm that, since w is black and
(w,x) € E,
w((w,%)) > dlx] = min w((y, x)).

yeVv
colour[y] =black
(v, x)€E
Thus
w(u,v) =dlv] <dlx] <w(w, x))
in this case as well. O

Claim 9. T is a minimum-cost spanning tree of G.

Proof. Since T' is a spanning tree of G, by Claim 7, and since T is a minimum-cost spanning
tree of G, by assumption, w(T) < w(T’). It is necessary and sufficient to show that w(T') <
w(T) as well — for then w(T') = w(T’) and both of these spanning trees are minimum-cost
spanning trees of G.

Recall that the set Er of edges in T and the set E7 of edges in T’ are related as follows (see,
in particular, line (6) above):

Er = (Ex \ {(w,x)}) U{(u,v)}.

Furthermore, (w,x) € Er.

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

Therefore

w(T)= > w((y.z)
(y,2)€Ey
= > ul(y.z) —w((w,x) +u((w,v)) (since Ey = (Er\ {(w.x)}) U{(u,v)})
(Y’Z)GET
=w(T) — (w((w,x)) —w(u,v)))
<w(T) (since w((w,x)) > w((u,v)) by Claim &, above). O

Claim 10. G, is a subgraph of T.

Proof. Since the set of vertices in Gf is a subset of V and T includes all the vertices in V,
it is necessary and sufficient to show that every edge in Gi is an edge in T'.

The set of edges in G is

E, = Ep U {(u,v)} (as shown at line (2))
CErU{(u,v)} (since Gy is a subgraph of T, so that E, C Er).

Since Ef = (Er U {(u,v)}) \ {(w,x)}, as shown at line (6), it is sufficient to establish that
(w,x) ¢ Ep in order to complete the proof. This has already been established (and is
included as part of Claim 3, above). O

It follows by Claims 9 and 10 that G; is a subgraph of minimum-cost spanning tree of G,
as required to complete the proof in this case.

	Introduction
	Basis
	Inductive Step
	Notation
	Proof that the New Graph is a Subgraph
	Proof that the New Graph is a Subgraph of a Minimum-Cost Spanning Tree
	Case: The New Edge is Included in the Current Spanning Tree
	Case: The New Edge is Not Included in the Current Spanning Tree

