
Computer S
ien
e 331Analysis of Prim's Algorithm: Proof of a Key Lemma
1 Introdu
tionConsider the algorithm to �nd a minimum-
ost spanning tree that was presented andanalyzed during the last full week of
lasses. Re
all that if G = (V; E) is a a weightedundire
ted graph that is given as input and G is
onne
ted then, following an initializationstep, this algorithm uses a priority queue to
hoose verti
es and edges that should be addedto a subgraph Gb = (Vb; Eb)of the input graph G. As do
umented in the le
ture notes on the analysis of this algorithm,it is reasonably easy to establish that ea
h of the following properties is satis�ed after boththe beginning and end of ea
h exe
ution of the body of the while loop that makes up these
ond part of this algorithm:� Gb is a tree.� Gb is a subgraph of some spanning tree T of G.The obje
tive of this handout is to provide a proof of the next major property (that is notquite so easy to establish).� Gb is a subgraph of some minimum-
ost spanning tree T of G.The proof of this
laim will pro
eed by indu
tion on the number of exe
utions of the bodyof the while loop that have taken pla
e, so far.2 BasisOne
an see, by an examination of the
ode, that Vb = ; and Eb = ; immediately beforethe �rst exe
ution of the body of the while loop, while Vb = fsg and Eb = ; immediatelyafter this exe
ution of the loop body for some vertex s 2 V.1

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_33.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

In ea
h
ase, sin
e Gb = (Vb; Eb) does not in
lude any edges at all, it is
lear that Gb is asubgraph of every spanning tree of Gb. In parti
ular, Gb is a subgraph of every minimum-
ost spanning tree of G and (sin
e there are only �nitely many spanning trees, so that onemust have minimal
ost), at least one minimum-
ost spanning tree T of G does exist.3 Indu
tive Step3.1 NotationSuppose now that k � 1 and that the subgraph Gb = (Vb; Eb) produ
ed after k exe
utionsof the body of the while loop is a subgraph of some minimum-
ost spanning tree T of G.Suppose, as well, that the body of the loop is exe
uted (at least) one more time. Then,of
ourse, Gb is also the subgraph that has been produ
ed at the beginning of the k + 1stexe
ution of the loop body. Let G0b = (V0b; E0b)be the graph that is produ
ed after the k + 1st exe
ution of the loop body.3.2 Proof that the New Graph is a SubgraphIn this
ase, one
an see by inspe
tion of the
ode thatV0b = Vb [fvg (1)for some vertex v su
h that v =2 Vb, andE0b = Eb [f(u; v)g (2)for some vertex u 2 V. In parti
ular, u = �(v). As noted during the dis
ussion of thisalgorithm in
lass, one
an show (without too mu
h trouble) that (�(v); v) 2 E and �(v) isbla
k at this point in the
omputation, so that �(v) 2 Vb and G0b is a subgraph of G.3.3 Proof that the New Graph is a Subgraph of a Minimum-Cost Span-ning TreeIn order to
omplete this proof it is ne
essary and suÆ
ient to show that there exists aminimum-
ost spanning tree T0 of G su
h that G0b is a subgraph of T0.Two
ases
an be identi�ed and should be
onsidered: Either the edge (u; v) is an edgein T or it is not. 2

3.3.1 Case: The New Edge is In
luded in the Current Spanning TreeSuppose that the edge (u; v) is an edge in T. Then, sin
e every vertex in V is in
luded in Tand every edge in Eb is in
luded in T (be
ause Gb is a subgraph of T), it follows by thede�nition of E0b (given at line (2), above) that G0b is a subgraph of T in this
ase.It therefore suÆ
es to set T0 = T in this
ase in order to
omplete the proof.3.3.2 Case: The New Edge is Not In
luded in the Current Spanning TreeSuppose, instead, that the edge (u; v) is not an edge in T. Re
all again that, sin
e T is aspanning tree of G, T in
ludes all the verti
es that G does; letT = (V; ET) (3)and
onsider the graph U = (V; EU) where EU = ET [f(u; v)g. (4)Claim 1. U is a subgraph of G that
ontains a
y
le.Proof. First, note that U in
ludes the same set of verti
es as G. Sin
e ET � E (be
ause T isa subgraph of G) and sin
e (u; v) 2 E, EU � E, so that U is a subgraph of G.It follows by Corollary 5 in the le
ture notes on Trees, Spanning Trees, and Subgraphsthat, sin
e T is a spanning tree of G, jETj = jVj � 1.Now, sin
e (u; v) =2 ET it follows by the de�nition of U, given at line (4) above, that U in
ludesjVj verti
es and (jVj � 1) + 1 = jVj edges. It follows by Lemma 4 in the above set of notesthat U
ontains a
y
le, as
laimed.Claim 2. U
ontains a
y
le that in
ludes the edge (u; v).Proof. It follows by Claim 1, above, that U in
ludes some
y
le(u1; u2); (u2; u3); : : : ; (uk�1; uk); (uk; u1):Suppose that the edge (u; v) is not one of these edges; then, sin
eEU = ET [f(u; v)git follows that ea
h of the edges (ui; ui+1) (for 1 � i � k � 1) and (uk; u1) belongs to theset ET. Thus the above
y
le is also a
y
le in T | whi
h is impossible, sin
e T is a tree.Thus the edge (u; v) is in
luded the above
y
le, so that U has a
y
le in
luding theedge (u; v), as
laimed. 3

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_29.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_29 .pdf

Noti
e that, when listing the sequen
e of verti
es in any
y
le, we may begin with any oneof the verti
es that are be listed. Reversing the order of the listing of verti
es (whi
h isalso possible for an undire
ted graph), if ne
essary, we may now assume, by an appli
ationof Claim 2, that U in
ludes a
y
le(u1; u2); (u2; u3); : : : ; (uk�1; uk); (uk; u1) (5)su
h that v = u1 and u = u2. Re
all that, sin
e this is a
y
le, k � 3. We may also assume(by
onsidering the shortest
y
le that begins with v and u) that the verti
es u1; u2; : : : ; ukare distin
t | that is, this is a \simple
y
le."Consider the
olours of the verti
es in this
y
le at the beginning of the k + 1st exe
utionof the body of the loop: u1 = v is grey at this point be
ause v is stored on the priorityqueue and, as dis
ussed in the analysis of the algorithm, u2 = u = �(v) is a bla
k node atthis point.Re
all as well that the neighbours of all bla
k nodes are either bla
k or grey.Considering the
olours of ea
h of the verti
es u3; u4; : : : in turn, until a grey vertex isfound, we see that exa
tly one of the following two
ases must apply. Verti
es w and x willbe de�ned in ea
h
ase.1. The vertex ui is bla
k for 2 � i � k, so that v = u1 is the only grey node in this
y
le. Let w = uk and let x = u1 = v in this
ase.2. There exists an integer ` su
h that 3 � ` � k, uj is bla
k for 2 � j � `� 1, and su
hthat u` is grey. Let w = u`�1 and let x = u` in this
ase.Claim 3. The verti
es w and x satisfy ea
h of the following properties.(a) The vertex w is bla
k at the beginning of the k + 1st exe
ution of the body of thewhile loop.(b) The vertex x is grey at the beginning of the k+1st exe
ution of the body of the whileloop.(
) The edge (w; x) is not an edge in G0b. That is, (w; x) =2 E0b.Proof. Properties (a) and (b) are easily established by a
onsideration of the de�nition of wand x in ea
h of the two
ases that are listed above.Suppose that the �rst
ase is appli
able, so that x = u1 = v and w = uk. Sin
e u1; u2; : : : ; ukare distin
t, k � 3, u = u2 and w = uk, w 6= u.Now noti
e that, sin
e v is being added to the set of verti
es to be in
luded in the tree G0bduring this exe
ution of the loop body (at the same time as the edge (u; v) is being added),4

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

the degree of v in G0b is one and u is the only neighbour of v in G0b. Sin
e w 6= u w
annotbe a neighbour of v in G0b as well, so the edge (w; v) (whi
h is the same as the edge (w; x))does not belong to G0b. That is, property (
) holds.Suppose, instead, that the se
ond
ase is appli
able. In this
ase x = u` is a grey nodethat is di�erent from v. Sin
e x is grey at this point x =2 Vb, and x 6= v, so x =2 V0b. It is
learly impossible for (w; x) to belong to G0b in this
ase. Thus property (
) also holds inthis
ase as well.We are now ready to de�ne the minimum-
ost spanning tree T0 that will be used to
ompletethe proof for this
ase: LetT0 = (V; E0T) where E0T = (ET n f(w; x)g) [f(u; v)g (6)That is, the edges in T0 are all of the edges in T ex
ept for (w; x), together with the newedge (u; v).Claim 4. T0 is a subgraph of G with jVj verti
es and jVj � 1 edges.Proof. It is
lear by inspe
tion of the de�nitions of T0 and U (at lines (6) and (4), respe
-tively) that T0 is a subgraph of U. Sin
e U is a subgraph of G it is easy to show that T0 is asubgraph of G as well.Sin
e the set of verti
es in T0 is V it is
lear that there jVj edges in T0.To see that the number of edges in T0 is jVj � 1, note �rst that, sin
e (u; v) is an edge in G0bwhile (w; x) is not an edge in this graph, the edges (u; w) and (w; x) are
learly distin
t. Itfollows that (w; x) is an edge in T, sin
e this is an edge in U (by the
hoi
e of w and x) andsin
e (u; v) is the only edge in U that is not also an edge in T. That is, (w; x) 2 ET.On the other hand, (u; v) =2 ET under the
ase that we are now
onsidering.It now follows by the de�nition of T0 at line (6) thatjET[j = (jETj � 1) + 1 = jETj;and jETj = jVj � 1 sin
e T is a spanning tree of G.Claim 5. T0 is a
onne
ted graph.Proof. It is ne
essary and suÆ
ient to prove that there is a path from y to z
onsisting ofedges in T0 for ea
h pair of distin
t verti
es y; z 2 V.Note that, sin
e T is a spanning tree of G, T is
onne
ted and in
ludes the same set ofverti
es as T0, so there is a path y = w1; w2; : : : ; wh = z (7)5

from y to z in T. That is, (wi; wi+1) 2 ET for 1 � i � h� 1. We may also assume that thisis a \simple path," that is, w1; w2; : : : ; wh are distin
t.Now, either the edge (w; x) is in
luded in the above path, or it is not. These
ases will be
onsidered separately.Case: (w; x) is in
luded in the above path: Re
all that (w; x) is one of the edges in
ludedin the
y
le u1; u2; : : : ; ukin the graph U that is introdu
ed at line (5), above, and that all the edges in this
y
le aredistin
t. Sin
e (w; x) is the only edge in
luded in U that is not also in
luded in T0, all of theother edges in this
y
le
an be used to form a path between w and x in T0.A path from y to z in T0
an now be formed from the path shown at line (7) by repla
ingea
h o

urren
e of the edge (w; x) with the path between w and x in T0 (in the appropriatedire
tion) that has just been des
ribed.Case: (w; x) is not in
luded in the above path: In this
ase, ea
h edge in this path is anedge in
luded in T0, so that the path shown at line (7) is a path from y to z in T0.Sin
e y and z were arbitrarily
hosen from V it follows that T0 is
onne
ted, as
laimed.Claim 6. T0 is a tree.Proof. This follows dire
tly from Claims 4, 5, and from Lemma 7 in the online le
turenotes on Trees, Spanning Trees, and Subgraphs.Claim 7. T0 is a spanning tree of G.Proof. T0 is a subgraph of G, by Claim 4. This subgraph is a tree, by Claim 6, and itin
ludes all the verti
es in G. It is therefore a spanning tree of G.Claim 8. w((w; x)) � w((u; v)).Proof. Re
all that w and x were de�ned in one of two ways, depending on the lo
ation of win the
y
le u1; u2; : : : ; ukin U introdu
ed at line (5) above. Ea
h of these will be
onsidered separately.Case: x = u1 = v and w = uk 6= u2 = u: Re
all, from the analysis of this algorithm thatu = �[v℄, w((u; v)) = d[v℄ = miny2V
olour[y℄=bla
k(y, v)2Ew((y; v)):6

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_29.pdf
http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

It follows by the
hoi
e of w (as des
ribed above) that the
olour of w is bla
k at thebeginning of the k+1st exe
ution of the body of the while loop and that (w; v) = (w; x) 2 E.It therefore follows by the above relationship thatw((u; v)) = d[v℄ = d[w℄ � w((w; x));as desired.Case: w = u`�1 and x = u` where 3 � ` � k. Re
all that w is a bla
k node and that x isa grey node that is di�erent from v, at the beginning of the k+ 1st exe
ution of the bodyof the while loop, in this
ase.Note that w((u; v)) = d[v℄ in this
ase (and, for the same reason) on
e again. Sin
e theelement v is removed from the priority queue at the beginning of this exe
ution of the bodyof the loop (with priority d[v℄ at this point), and sin
e x is also stored on the priorityqueue with priority d[x℄, but not removed at this point, it is
lear that d[v℄ � d[x℄.Finally, it follows by the notes on the analysis of this algorithm that, sin
e w is bla
k and(w; x) 2 E, w((w; x)) � d[x℄ = miny2V
olour[y℄=bla
k(y, x)2Ew((y; x)):Thus w(u; v) = d[v℄ � d[x℄ � w(w; x))in this
ase as well.Claim 9. T0 is a minimum-
ost spanning tree of G.Proof. Sin
e T0 is a spanning tree of G, by Claim 7, and sin
e T is a minimum-
ost spanningtree of G, by assumption, w(T) � w(T0). It is ne
essary and suÆ
ient to show that w(T0) �w(T) as well | for then w(T0) = w(T0) and both of these spanning trees are minimum-
ostspanning trees of G.Re
all that the set ET of edges in T and the set E0T of edges in T0 are related as follows (see,in parti
ular, line (6) above): E0T = (ET n f(w; x)g) [f(u; v)g:Furthermore, (w; x) 2 ET.
7

http://www.cpsc.ucalgary.ca/~eberly/Courses/CPSC331/2009a/Notes/lecture_34.pdf

Thereforew(T0) = X(y;z)2E0T w((y; z))= X(y;z)2ET w((y; z))� w((w; x)) + w((u; v)) (sin
e E0T = (ET n f(w; x)g) [f(u; v)g)= w(T)� (w((w; x))� w(u; v)))� w(T) (sin
e w((w; x)) � w((u; v)) by Claim 8, above).Claim 10. G0b is a subgraph of T0.Proof. Sin
e the set of verti
es in G0b is a subset of V and T0 in
ludes all the verti
es in V,it is ne
essary and suÆ
ient to show that every edge in G0b is an edge in T0.The set of edges in G0 isE0b = Eb [f(u; v)g (as shown at line (2))� ET [f(u; v)g (sin
e Gb is a subgraph of T, so that Eb � ET).Sin
e E0T = (ET [f(u; v)g) n f(w; x)g, as shown at line (6), it is suÆ
ient to establish that(w; x) =2 E0b in order to
omplete the proof. This has already been established (and isin
luded as part of Claim 3, above).It follows by Claims 9 and 10 that G0b is a subgraph of minimum-
ost spanning tree of G,as required to
omplete the proof in this
ase.

8

	Introduction
	Basis
	Inductive Step
	Notation
	Proof that the New Graph is a Subgraph
	Proof that the New Graph is a Subgraph of a Minimum-Cost Spanning Tree
	Case: The New Edge is Included in the Current Spanning Tree
	Case: The New Edge is Not Included in the Current Spanning Tree

