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Introduction What is a Proof of Correctness?

How Do We Specify a Computational Problem?

Recall: a computational problem is speci�ed by one (or more) pairs of
preconditions and postconditions.

Precondition: A condition that one might expect to be satis�ed when
the execution of a program begins. This generally involves the
algorithm's inputs as well as initial values of global variables.

Postcondition: A condition that one might want to be satis�ed when
the execution of a program ends. This might be

A set of relationships between the values of inputs (and the values of
global variables when execution started) and the values of outputs (and
the values of global variables on a program's termination), or
A description of output generated, or exception(s) raised.
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Introduction What is a Proof of Correctness?

Example: Speci�cation of a \Search" Problem

Precondition P1: Inputs include

n: a positive integer

A: an integer array of length n, with entries

A[0];A[1]; : : : ;A[n-1]

key: An integer found in the array (ie, such that A[i] = key for at
least one integer i between 0 and n-1)

Postcondition Q1:

Output is the integer i such that 0 � i < n, A[j] 6= key for every
integer j such that 0 � j < i, and such that A[i] = key

Inputs (and other variables) have not changed

This describes what should happen for a \successful search."
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Introduction What is a Proof of Correctness?

Example: Speci�cation of a \Search" Problem

Precondition P2: Inputs include

n: a positive integer

A: an integer array of length n, with entries

A[0];A[1]; : : : ;A[n-1]

key: An integer not found in the array (ie, such that A[i] 6= key for
every integer i between 0 and n-1)

Postcondition Q2:

A notFoundException is thrown

Inputs (and other variables) have not changed

This describes what should happen for an \unsuccessful search."
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Introduction What is a Proof of Correctness?

Example: Speci�cation of a \Search" Problem

A problem can be speci�ed by multiple precondition-postcondition pairs

(P1;Q1); (P2;Q2); : : : ; ; (Pk ;Qk)

as long as it is not possible for more than one of the preconditions

P1;P2; : : : ;Pk

to be satis�ed at the same time.

For example, if P1, Q1, P2, and Q2 are as in the previous slides then the
pair of precondition-postcondition pairs

(P1;Q1); (P2;Q2)

could specify a \search problem" in which the input is expected to be any
positive integer n, integer array A of length n, and integer key.
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Introduction What is a Proof of Correctness?

When is an Algorithm Correct?

Suppose, �rst, that a problem is speci�ed by a single

precondition-postcondition pair (P;Q).

An algorithm (that is supposed to solve this problem) is correct if it
satis�es the following condition: If

inputs satisfy the given precondition P and

the algorithm is executed

then

the algorithm eventually halts, and the given postcondition Q is
satis�ed on termination.

Note: This does not tell us anything about what happens if the algorithm
is executed when P is not satis�ed.
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Introduction What is a Proof of Correctness?

When is an Algorithm Correct?

Suppose, next, that k � 2 and that a problem is speci�ed by a sequence of
k precondition-postcondition pairs

(P1;Q1); (P2;Q2); : : : ; (Pk ;Qk)

where it is impossible for more than one of the preconditions to be
satis�ed at the same time.

An algorithm (that is supposed to solve this problem) is correct if the
following is true for every integer i between 1 and k : If

inputs satisfy the given precondition Pi and

the algorithm is executed

then

the algorithm eventually halts, and the given postcondition Qi is
satis�ed on termination.
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Introduction What is a Proof of Correctness?

When is an Algorithm Correct?

A consequence of the previous de�nitions: Consider a problem speci�ed by
a sequence of k precondition-postcondition pairs

(P1;Q1); (P2;Q2); : : : ; (Pk ;Qk):

Then an algorithm that is supposed to solve this problem is correct if and
only if it is a correct solution for each of the k problems that are each
speci�ed by the single precondition-postcondtion paiir Pi and Qi , for i
between 1 and k .

=) It is su�cient to consider problems that are speci�ed by a single
precondition and postcondition (and we will do that, from now on).
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Introduction Applications

Why are Proofs of Correctness Useful?

Who Generates Proofs of Correctness?

Algorithm designers (whenever the algorithm is not obvious). Other
people need to see evidence that this new algorithm really does solve
the problem!

Note that testing cannot do this (in general).

Who Uses Proofs of Correctness?

Anyone coding, testing, or otherwise maintaining software
implementing any nontrivial algorithm need to know why (or how )
the algorithm does what it is supposed in order to do their jobs well.
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Introduction Applications

What Will Happen in CPSC 331?

The instructor will be presenting proofs of correctness of several nontrivial
algorithms in this course.

You will be expected to use these proofs to

document your code more e�ectively,

make your code easier to test and maintain,

design test suites that are more comprehensive, and

debug software more e�ectively.

You will be asked to develop a few really, really easy proofs in this course,
just to show that you know how. You won't be asked to do more than
that here.
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Introduction Applications

What Will Happen Later?

Computer Science majors will be asked to write proofs of correctness of
algorithms in senior courses they take later on.

In CPSC 313 students are asked to develop some very simple kinds of
algorithms (given as very simple \automata" or \machines").
Students may be asked to prove the correctness of these, in
CPSC 313.

In CPSC 413 students are asked to show that they know how to use
some \algorithm design techniques" by developing algorithms (that
use these techniques) for speci�c problems. They might be asked to
show that their algorithms are correct in CPSC 413.
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Introduction Getting Started

Overview of the Rest of the Lecture(s)

1 We will consider proofs of correctness of algorithms written using a
\tiny programming language" that includes

continue statement | does nothing
assignment statements
if-then-else statements | \branching"
while-do loops

and where programs can be sequences of the above

2 We will see how to handle additional control structures

3 We will introduce nonrecursive procedures

4 We will introduce simple recursion

5 Tutorial exercises will help you to apply these ideas to software
development using Java
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Introduction Getting Started

Necessary Background

Propositional Logic: We will use the following operators on boolean values.

:p \not p:"
true if and only if p is false

p ^ q \p and q:"
true when p and q are both true

p _ q \p or q:"
true when at least one of p or q is true

p ) q \p implies q:"
true unless p is true and q is false

p () q \p if and only if q:"
true when p and q have the same truth value

Note: Some texts use di�erent symbols for these operators!
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Partial Correctness De�nition

One Part of a Proof of Correctness: Partial Correctness

Partial Correctness: If

inputs satisfy the precondition p, and

algorithm or program S is executed,

then either

S halts and its inputs and outputs satisfy the postcondition q

or

S does not halt, at all.

Generally written as
fpg S fqg
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Partial Correctness Proof Rules

Proof Rule: continue

Statement: continue

E�ect: No change

Conclusion: In order to show that

fpg continue fqg

you should prove that

p ) q
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Partial Correctness Proof Rules

Wait a Minute!

Q: What (if anything) have we accomplished here?

A: strategy for proof of empty code blocks

Q: Why would you want to have a continue statement anyway?

A: Main reason:

exibility in representing other code structures using our limited
operations

Eg. use continue to represent empty else condition in
if-then-else structure
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Partial Correctness Proof Rules

Proof Rule: Assignment Statements

Statement: x := e

E�ect: The value of the variable x is reset to be that of
the expression e

Conclusion: A bit complicated: : :
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Partial Correctness Proof Rules

Notation for Substitution

De�nition: Let

q be a condition,

x be a variable, and let

e be an expression | of the same type as x.

Then qx
e
is the condition produced from q by replacing every occurrence of

the variable x with the expression e.

Examples:
q e qx

e

x is odd 3 3 is odd
x is odd x+ 1 x+ 1 is odd

Note: q is true after a statement \x := e" is executed if and only if qx
e

was true before!
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Partial Correctness Proof Rules

Proof Rule: Assignment Statements, Continued

Statement: x := e

E�ect: The value of the variable x is reset to be that of
the expression e

Conclusion: In order to show that

fpg x := e fqg

you should prove that

p ) qx
e

Q. Why do this?

A. Clarity | helps make what needs to be proved more explicit (simple
implication expressed in x only
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Partial Correctness Proof Rules

Proof Rule: Branching

Statement: if c then S1 else S2 end if

E�ect: If c is true then S1 is executed; S2 is executed
otherwise

Conclusion: In order to show that

fpg if c then S1 else S2 end if fqg

prove both of the following:

fp ^ (c)g S1 fqg

fp ^ :(c)g S2 fqg
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Partial Correctness Proof Rules

Hold On, Now!

Q: We've gone from proving the partial correctness of one program to
proving the partial correctness of two of them! How is this progress?

A: a compound statement/program has been broken into two statements,
each of which can be proved separately.
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Partial Correctness Proof Rules

Proof Rule: Loops

Problem: Show that

fpg while c do S end while fqg

Observation: There is generally some condition that we expect to hold at
the beginning of every execution of the body of the loop. Such a condition
is called a loop invariant.

To Prove That a Condition r is a Loop Invariant for the Above:

1 Prove that (p ^ (c))) r

2 Identify another condition br and prove that

frg S fbr g

(br ^ (c))) r

Note: essentially a proof by induction that the loop invariant holds after
zero of more executions of the loop body.
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Partial Correctness Proof Rules

Proof Rule: Loops, Continued

Statement: while c do S end while

Proof Rule: In order to prove that

fpg while c do S end while fqg

it is su�cient to do the following:

1 Prove that (p ^ :(c))) q

2 Identify a condition r and prove that r is a
loop invariant using the previously given
process for this

3 As part of the previous step you identi�ed
another condition, br , such that
frg S fbr g. Complete this process by
proving that (br ^ :(c))) q
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Partial Correctness Proof Rules

Proof Rule: Sequences of Programs

Statement: S1; S2

E�ect: Program S1 is executed, and then program S2 is
executed after that

Observation: There should be some well-de�ned objective
that is achieved by the initial program S1

Proof Rule: Do the following order to prove that

fpg S1; S2 fqg

1 Identify an intermediate assertion r

2 Prove that fpg S1 frg

3 Prove that frg S2 fqg
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Termination De�nition

Another Part: Termination

Termination: If

inputs satisfy the precondition p, and

algorithm or program S is executed,

then

S is guaranteed to halt!

Note: Partial Correctness + Termination ) Correctness!

Partial Correctness and Termination are often (but not always) considered
separately because : : :

Di�erent | independent | arguments are used for each

Sometimes one condition holds, but not the other! Then the
algorithm is not correct: : : but something interesting can still be
established.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #2{3 26 / 43

Termination Proof Rules

Proof Rule: continue and Assignment Statements

Problem: Prove that each of the statements

continue and x := e

halt (for any variable x and expression e) when a given precondition p is
satis�ed

Solution: There's nothing we need to do! These statements always halt.
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Termination Proof Rules

Proof Rule: Branching

Statement: if c then S1 else S2 end if

E�ect: If c is true then S1 is executed; S2 is executed
otherwise

Conclusion: In order to prove that if p is satis�ed and the
above statement is executed, then it halts, prove
both of the following:

If p ^ (c) is satis�ed and S1 is executed
then this program halts

If p ^ :(c) is satis�ed and S2 is executed
then this program halts
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Termination Proof Rules

Proof Rule: Loops

Problem: Show that if a condition p is satis�ed and a loop

while c do S end while

is executed, then the loop eventually terminates.

Suppose that a loop invariant r for the precondition p and the above loop
has already been found. You should have done this when proving the
partial correctness of this loop | also useful to prove termination.

Proof Rule: To establish the above termination property, prove each of the
following.

1 If the loop invariant r is satis�ed and the loop body S is executed
then the loop body terminates.

2 The loop body is only executed a �nite number of times.
(Information about how to prove this is on the next slide.)
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Termination Proof Rules

Proof Rule: Loops, Continued

De�nition: A loop variant for a loop

while c do S end while

is a function fL from program variables to the set of integers that satis�es
the following additional properties:

The value of fL is decreased by at least one every time the loop
body S is executed

If the value of fL is less than or equal to zero then the loop test c
is false

Note: The initial value of fL is an upper bound for the number of
executions of the loop body before the loop terminates.
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Termination Proof Rules

Proof Rule: Loops, Concluded

Problem: Find an upper bound on the number of executions
of the loop body when a condition p is satis�ed and
the loop

while c do S end while

is executed

Solution: 1 Identify an integer-valued function fL of the
program variables

2 Prove that fL is a loop variant for this loop

3 Return the initial value of fL as an upper bound
on the number of executions of the loop body

Note: this proves termination!
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Termination Proof Rules

Proof Rule: Sequences of Programs

Objective: Show that if condition p is satis�ed and the pro-
gram S1; S2 is executed then this program halts

Assumption: While proving partial correctness we have found
an intermediate assertion r such that

fpg S1 frg

Proof Rule: In order to prove that S1; S2 halts when executed
with condition p satis�ed

1 Prove that S1 halts when executed with
condition p satis�ed

2 Prove that S2 halts when executed with
condition r satis�ed, for r as above
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Example

Example

Prove the correctness of the following algorithm.

Precondition: n is a positive integer

Postcondition: n is unchanged and sum =
nX

j=1

j

Algorithm: i := 1
sum := 1
while (i < n) do

i := i + 1
sum := sum + i

end while

For detailed solution, see Lecture Supplement online.
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...And the Rest Extensions

Additional Control Structures

Any real programming language is likely to include additional control
structures: : :

Example: Consider the statement if c then S end if

: : : but these can generally be rewritten using the statements and control
structures we have already : : :

Example, Continued: This has the same e�ect as

if c then S else continue end if

: : :so we can replace the code that uses a \new" structure with the
equivalent code (that we know how to analyze) and then proceed.
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...And the Rest Extensions

Additional Control Structures, Continued

Example, Continued: Suppose we wish to prove that if a condition p is
satis�ed and the statement

if c then S end if

is executed, then this program terminates and the condition q is satis�ed
on termination.

Then it is su�cient to prove that if the condition p is satis�ed and the
\equivalent" statement

if c then S else continue end if

is executed, then the program terminates and the condition q is satis�ed
on termination.
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...And the Rest Extensions

Additional Control Structures, Concluded

Example, Concluded: Referring to the previous notes we can deduce the
following about this example.

Necessary and Su�cient To Prove Partial Correctness:

prove fp ^ (c)g S fqg

prove (p ^ :(c))) q

Necessary and Su�cient to Prove Termination:

prove that S terminates
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...And the Rest Extensions

Nonrecursive Methods

Suppose a program consists of a set of methods, some of which call each
other, but recursion is not used.

Then one of these methods | say, \method A" | does not call any
methods at all.

Prove that method A is correct.

Suppose method A has precondition pA and postcondition qA. Add a
new proof rule:

If precondition pA is satis�ed and method A is called then

the method terminates and postcondition qA is satis�ed.

Continue as if method A did not exist and calls to the method were
analyzed using the above.

Iterate until the correctness of all methods (including the main
method) has been established.
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...And the Rest Extensions

Simple Recursive Methods

Suppose method A calls itself (but does not call any other methods).

In this case it is often possible to prove the correctness of this method
using mathematical induction, proceeding by induction on the \size" of
the inputs.

Base cases of inductive proof: base cases of the recursive algorithm

Induction hypothesis: algorithm is correct for inputs of \size smaller
that n"

Proof proceeds by proving correctness while assuming the induction
hypothesis (i.e., every recursive call returns the correct output)
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...And the Rest Extensions

Example

Prove the correctness of the following algorithm.

Precondition: i is a positive integer

Postcondition: the value returned is the
i th Fibonacci number, Fi

Algorithm: long fib (int i)
if (i == 0) return 1
if (i == 1) return 1
return fib(i-1) + fib(i-2)

See Self-Study Exercises #2 (Problem 1)
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...And the Rest Extensions

Applications to Java Development

A proof of correctness of an algorithm includes detailed information about
the expected state of inputs and variables at every step during the
computation.

This information can be included in documentation as an aid to other
developers. It also facilitates e�ective testing and debugging.

Self-study exercises can be used to learn more about this.
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...And the Rest Extensions

Can This All Be Automated?

The following questions might come to mind.

Q: Is it possible to write a program that decides whether a
given program is correct, providing a proof of correctness
of the given program if it is?

A: No! Computer science students will see in CPSC 313
that the simpler problem of determining whether a given
program halts on a given input is \undecidable:" It has
been proved that no computer program can solve this
problem!

Q: Can a computer program be used to check a proof of
correctness?

A: See our courses in \Arti�cial Intelligence" for informa-
tion about this!
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...And the Rest Additional References

References

Discrete Mathematics textbooks sometimes include \proofs of correctness"
of algorithms as an application of mathematical induction:

Recommended References:

Susanna S. Epp
Discrete Mathematics with Applications, Third Edition
See Section 4.5

Kenneth H. Rosen
Discrete Mathematics and Its Applications, Sixth Edition
See Section 4.5

Note: Epp's presentation of this topic is quite di�erent from these notes.
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...And the Rest Additional References

For Further Reading

Proofs of correctness are discussed briey in the textbook (Section 4.3).
Also, Chapter 1 of

Michael Soltys
An Introduction to the Analysis of Algorithms

contains a nice introduction to proofs of correctness and is freely available
online!

Each of the following references is available in the library:

Edsger W. Dijkstra
A Discipline of Programming

David Gries
The Science of Programming

These may be challenging, especially for students who have not already
completed PHIL 279 (or taken another course in mathematical logic)!
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