
Computer Science 331
Stacks

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #11

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 1 / 23

Outline

1 De�nition

2 Applications
Parenthesis Matching
Evaluation of Recursive Programs

3 Implementation
Array-Based Implementation
Linked List-Based Implementation

4 Additional Information

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 2 / 23

De�nition

De�nition of a Stack ADT

A stack is a collection of objects that can be accessed in \last-in,
�rst-out" order: The only visible element is the (remaining) one that was
most recently added.

It is easy to implement such a simple data structure extremely e�ciently
| and it can be used to several several interesting problems.

Indeed, a stack is used to execute recursive programs | making this one
of the more widely used data structures (even though you generally don't
notice it!)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 3 / 23

De�nition

A Stack Interface: Invariant

A stack interface StackInt<E> is de�ned on page 205 of the textbook.
This is the basis for the following (which adds an appropriate interface
invariant as well as preconditions and posconditions for method).

Interface Invariant:

Used to provide access to a stack of objects of type E: The object
that is visible at the top of the stack is the object that has most
recently been pushed onto it (and not yet removed)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 4 / 23

De�nition

A Stack Interface: Methods

1 void push(E obj):
Precondition: Interface invariant
Postcondition:

a) The input object has been pushed onto the stack (which is otherwise
unchanged)

2 E peek() (called top in the textbook):
Precondition:

a) Interface Invariant
b) The stack is not empty

Postcondition:

a) Value returned is the object on the top of the stack
b) The stack has not been changed

Exception: An EmptyStackException is thrown if the stack is

empty when this method is called

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 5 / 23

De�nition

A Stack Interface: Methods

3 E pop():
Precondition: Same as for peek
Postcondition:

a) Value returned is the object on the top of the stack
b) This top element has been removed from the stack

Exception: An EmptyStackException is thrown if the stack is

empty when this method is called

4 boolean isEmpty():
Precondition: Interface Invariant
Postcondition:

a) The stack has not been changed.
b) Value returned is true if the stack is empty and false otherwise

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 6 / 23

De�nition

Example

Initial stack

5 top
10

S: 15

3) S.push(3)

S:

Output:

1) S.peek()

S:

Output:

4) S.push(4)

S:

Output:

2) S.pop()

S:

Output:

5) S.peek()

S:

Output:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 7 / 23

Applications Parenthesis Matching

Problem: Parenthesis Matching

Consider an expression, given as a string of text, that might include
various kinds of brackets.

How can we con�rm that the brackets in the expression are properly
matched? Eg. [(3� 4) + (2� (3 + 6))]

Solution using a Stack (provable by induction on the length of the
expression):

Begin with an empty bounded stack (whose capacity is greater than
or equal to the length of the given expression)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 8 / 23

Applications Parenthesis Matching

Solution Using a Stack (continued)

Then parentheses are matched if and only if:

Stack is never empty when we want to pop a left bracket o� it, and

Compared left and right brackets always do have the same type, and

The stack is empty after the last symbol in the expression has been
processed.

Number of Stack Operations Required: At most two more than the
length of the expression

Exercise: trace execution of this algorithm on the preceding example.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 9 / 23

Applications Evaluation of Recursive Programs

Problem: Evaluation of a Recursive Function

How is a recursive function (like this) evaluated on a computer?

public int �b(int n)
if n == 0 then

return 0
else if n == 1 then

return 1
else

x := �b(n � 1)
y := �b(n � 2)
return x + y

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 10 / 23

Applications Evaluation of Recursive Programs

Solution Using a Stack

All information needed to support execution in a function is kept in an
activation record (also called a call frame):

space for parameters' values

space for values of local variables

space for location to which control should be returned

During program execution, one maintains a process stack of these
activation records:

When a function is called, create a new activation record to store
information about it and push it onto the top of the stack; maintain
information this call's progress on this

When a function is �nished, its activation record is popped o� the
stack and control is passed to the function whose activation record is
currently on the top

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 11 / 23

Applications Evaluation of Recursive Programs

Application To Example

Components of an Activation Record for This Function:

space for parameter n

space for local variable x

space for local variable y

space for return location

Exercise: Trace the behaviour of the process stack when fib(4) is
computed.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 12 / 23

Implementation

Two possibilities

Dynamic array implementation:

stack's contents stored in cells 0; : : : ; top � 1; top element in top � 1

can use a static array if size of stack is bounded

Linked implementation:

identify top of stack with the head of a singly-linked list

works well because stack operations only require access to the top of
the stack, and linked list operations with the head are especially
e�cient

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 13 / 23

Implementation Array-Based Implementation

Implementation Using an Array

Initial Stack

5 top
10

S: 15

0 1 2 3 4 5
S: 15 10 5 ? ? ?

top = 2

E�ect of S.pop()

S:

0 1 2 3 4 5
S:

top =

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 14 / 23

Implementation Array-Based Implementation

Implementation Using an Array

E�ect of S.push(3)

S:

0 1 2 3 4 5
S:

top =

E�ect of S.push(4)

S:

0 1 2 3 4 5
S:

top =

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 15 / 23

Implementation Array-Based Implementation

Implementation of Stack Operations

public class ArrayStack<T> {

private T[] stack;

private int top;

public ArrayStack() {

public boolean isEmpty() {

public int size() {

public void push(T x) {

public T peek() {

if (isEmpty()) throw new EmptyStackException();

}

public T pop() {

if (isEmpty()) throw new EmptyStackException();

}

}

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 16 / 23

Implementation Array-Based Implementation

Cost of Operations

All operations cost �(1) (constant time, independent of stack size)

Problem: What should we do if the stack size exceeds the array size?

modify push to reallocate a larger stack (or use a dynamic array)

public void push(T x) {

++top;

if (top == stack.length) {

T [] stackNew = (T[]) new Object[2*stack.length];

System.arraycopy(stackNew,0,stack,0,stack.length);

stack = stackNew;

}

stack[top] = x;

}

Revised cost:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 17 / 23

Implementation Linked List-Based Implementation

Implementation Using a Linked List

Initial Stack

5 top
10

S: 15

top

5 10 15

E�ect of S.pop()

S:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 18 / 23

Implementation Linked List-Based Implementation

Implementation Using a Linked List

E�ect of S.push(3)

S:

E�ect of S.push(4)

S:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 19 / 23

Implementation Linked List-Based Implementation

Implementation of Stack Operations

public class LinkedListStack<T> {

private class StackNode<T> {

private T value;

private StackNode<T> next;

private StackNode(T x, StackNode<T> n)

{ value = x; next = n; }

}

private StackNode<T> top;

private int size;

public LinkedListStack()

{

public boolean isEmpty() {

public int size() { return size; }

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 20 / 23

Implementation Linked List-Based Implementation

Implementation of Stack Operations (cont.)

public void push(T x) {

}

public T peek() {

if (isEmpty()) throw new EmptyStackException();

}

public void pop() {

if (isEmpty()) throw new EmptyStackException();

}

Cost of stack operations:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 21 / 23

Additional Information

Variation: Bounded Stacks

Size-Bounded Stacks | Similar to stacks (as de�ned above) with the
following exception:

Stacks are created to have a maximum capacity (possibly
user-de�ned | so that two constructors are needed)

If the capacity would be exceeded when a new element is added to
the top of the stack then push throws a
StackOverflowException and leaves the stack unchanged

A static array whose length is the stack's capacity can be used to
implement a size-bounded stack, extremely simply and e�ciently

Most \hardware" and physical stacks are bounded stacks.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 22 / 23

Additional Information

Stacks in Java and the Textbook

Implementation in Java 1.6:

Java 1.6 includes a Stack class as an extension of the Vector class
(a dynamic array).
Unfortunately, this implementation is somewhat problematic (Stack
inheirit's Vector's methods, too!)

Implementation of Stacks in the Textbook (Section 5.1):

Implementations \from Scratch" using arrays (for a bounded stack
with �xed capacity) and a linked list

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #11 23 / 23

	Definition
	Applications
	Parenthesis Matching
	Evaluation of Recursive Programs

	Implementation
	Array-Based Implementation
	Linked List-Based Implementation

	Additional Information

