	Outline	
Computer Science 221	1 The Dictionary ADT	
Binary Search Trees	 2 Binary Trees • Definitions • Relationship Between Size and Depth 	
Mike Jacobson Department of Computer Science University of Calgary Lectures #13–14	 Binary Search Trees Definition Searching Finding an Element with Minimal Key BST Insertion BST Deletion Complexity Discussion 	
	4 References	
ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14	
ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14	
ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Trees Definitions Rinary Tree	
ke Jacobson (University of Calgary) Computer Science 331 Lectures #13–14 1 / 34 The Dictionary ADT The Dictionary ADT	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13–14 Binary Trees Definitions Binary Trees Definitions	
Ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Trees Definitions Binary Tree	
Ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 Lectures #13-14 Computer Science 331 Lectures #13-14 Lectures #13-14 Lectures #13-14 Lectures #13-14<	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Trees Definitions Binary Trees Definitions A binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes.	
Ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 3	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Trees Definitions Binary Tree Definitions A binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either	
ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lecture #13-14 <td colspane<="" td=""><td>Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Trees Definitions Binary Tree Definitions A binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either • an "empty tree,"</td></td>	<td>Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Trees Definitions Binary Tree Definitions A binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either • an "empty tree,"</td>	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Trees Definitions Binary Tree Definitions A binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either • an "empty tree,"
ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 Computer Science 331 Lectures #13-14 Lectures #13-14 Computer Science 331 Lectures #13-14 Lectures #13-14 Lectures #13-14	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Tree Definitions Binary Tree Definitions A binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either • an "empty tree," Or • a structure that includes	
Ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 A dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 A dictionary and prove the science 331 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 1 / 34 Computer Science 331 Lectures #13-14 Computer Science 331 Lectures #13-14 Lec	Mike Jacobson (University of Calgary)Computer Science 331Lectures #13-14Binary TreeDefinitionsBinary TreeA binary tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes.A binary tree T is either• an "empty tree,"or• a structure that includes• the root of T (the node at the top)• the left subtree T_L of $T \dots$	
ke Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT The Dictionary ADT Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Computer Science 331 Lectures #13-14 1 / 34 The Dictionary ADT Computer Science 331 Computer Science 331 <td col<="" td=""><td>Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Tree Definitions Binary Tree Definitions Binary Tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either • an "empty tree," or • a structure that includes • the root of T (the node at the top) • the left subtree T_R of $T \dots$</td></td>	<td>Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Tree Definitions Binary Tree Definitions Binary Tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either • an "empty tree," or • a structure that includes • the root of T (the node at the top) • the left subtree T_R of $T \dots$</td>	Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Binary Tree Definitions Binary Tree Definitions Binary Tree T is a hierarchical, recursively defined data structure, consisting of a set of vertices or nodes. A binary tree T is either • an "empty tree," or • a structure that includes • the root of T (the node at the top) • the left subtree T_R of $T \dots$

 \sim

Binary Trees Definitions

Example and Implementation Details

Binary Trees Definitions

Additional Terminology

Binary Search Trees Definition

Binary Search Tree

Binary Search Tree Property

A **binary search tree** T is a data structure that can be used to store and manipulate a finite ordered set or mapping.

- T is a binary tree
- Each element of the dictionary is stored at a node of T, so

```
set size = size of T
```

• In order to support efficient searching, elements are arranged to satisfy the **Binary Search Tree Property** ...

Binary Search Tree Property: If T is nonempty, then

- The left subtree T_L is a binary search tree including all dictionary elements whose keys are *less than* the key of the element at the root
- The right subtree T_R is a binary search tree including all dictionary elements whose keys are *greater than* the key of the element at the root

Binary Search Trees Searching

Specification of "Search" Problem:

Precondition 1:

- a) T is a BST storing values of some type V along with keys of type E
- b) key is an element of type E stored with a value of type V in T

Postcondition 1:

- a) Value returned is (a reference to) the value in T with key key
- b) T and key are not changed

Precondition 2: same, but key is not in T *Postcondition 2:*

- a) A notFoundException is thrown
- b) T and key are not changed

Mike Jacobson (University of Calgary)

Binary Search Trees Searching

Searching: An Example

Binary Search Trees Searching

Binary Search Trees Searching

Computer Science 331

A Recursive Search Algorithm

```
public V search(bstNode<E,V> T, E key)
    throws notFoundException {
    if (T == null)
```

```
else if (key.compareTo(T.key) == 0)
```

```
else if (key.compareTo(T.key) < 0)</pre>
```

else

}

Lectures #13–14

Partial Correctness

Proved by induction on the height of T:

Binary Search Trees Searching

Termination and Running Time

Let Steps(T) be the number of steps used to search in a BST codeT in the worst case. Then there are positive constants c_1 , c_2 and c_3 such that

$$\mathsf{Steps}(\mathsf{T}) \leq egin{cases} c_1 & ext{if height}(\mathsf{T}) = -1, \ c_2 & ext{if height}(\mathsf{T}) = 0, \ c_3 + \max(\mathsf{Steps}(\mathsf{T.left}), \mathsf{Steps}(\mathsf{T.right})) & ext{if height}(\mathsf{T}) > 0. \end{cases}$$

Exercise: Use this to prove that

$$Steps(T) \leq c_3 \times height(T) + max(c_1, c_2)$$

Exercise: Prove that $Steps(T) \ge height(T)$ as well.

 \implies The worst-case cost to search in T is in $\Theta(\text{height}(T))$.

Lectures #13-14 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 Mike Jacobson (University of Calgary) Computer Science 331 17 / 34 Binary Search Trees Finding an Element with Minimal Key Binary Search Trees Finding an Element with Minimal Key A Recursive Minimum-Finding Algorithm Analysis: Correctness and Running Time // Precondition: T is non-null // Postcondition: returns node with minimal key, Partial Correctness (tree of height h): 11 null if T is empty • Exercise (similar to proof for Search) public bstNode<E,V> findMin(bstNode<E,V> T) { if (T == null) Termination and Bound on Running Time (tree of height *h*): • worst case running time is $\Theta(h)$ (and hence $\Theta(n)$) else if (T.left == null) Proof: exercise else

Mike Jacobson (University of Calgary)

}

Minimum Finding: The Idea

Binary Search Trees BST Insertion

Insertion: An Example

ldea:

Nodes Visited (inserting 9):

- Start at 6 :
- Next node
- Next node
- Next node

Aike Jacobson (University of Calgary)	Computer Science 331

Binary Search Trees BST Insertion

Analysis: Correctness and Running Time

Binary Search Trees BST Insertion

A Recursive Insertion Algorithm

{ root = insert(root, key, Value); }

protected

bstNode<E,V> insert(bstNode<E,V> T, E newKey, V newValue) {
 if (T == null)

else if (newKey.compareTo(T.key) < 0)</pre>

else if (newKey.compareTo(T.key) > 0)

else

return T;

}

Mike Jacobson (University of Calgary)

Computer Science 331

10

Lectures #13-14 22 / 3

Binary Search Trees BST Deletion

Deletion: Four Important Cases

Partial Correctness (tree of height *h*):

• Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

- worst case running time is $\Theta(h)$ (and hence $\Theta(n)$)
- Proof: exercise

- 1 Not Found (Eg: Delete 8)
- At a Leaf (Eg: Delete 7)
- One Child (Eg: Delete 10)
- Two Children (Eg: Delete 6)

Lectures #13-14

21 / 34

Binary Search Trees BST Deletion

First Case: Key Not Found

ldea:

Nodes Visited (delete 8):

- Start at 6 :
- Next node
- Next node
- Next node

Mike Jacobson (University of Calgary)

Binary Search Trees BST Deletion

Computer Science 331

Second Case: Key is at a Leaf

ldea:

Nodes Visited (delete 7):

- Start at 6 :
- Next node
- Next node

Binary Search Trees BST Deletion

Algorithm and Analysis

<pre>protected bstNode<e,v> delete(bstNode<e,v> T, E key) {</e,v></e,v></pre>
if (T != null) {
if (key.compareTo(T.key) < 0)
T.left = delete(T.left, key);
else if (key.compareTo(Tkey) > 0)
<pre>T.right = delete(T.right,key);</pre>
else if
<pre>// found node with given key</pre>
}
else
<pre>throw new notFoundException();</pre>
return T;
}

Correctness and Efficiency For This Case:

- tree is not modified if key is not found (base case will be reached)
- worst-case cost $\Theta(h)$ (same as search)

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #13-14 26 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else if ()

Correctness and Efficiency For This Case:

- •
- •
- •
- •
- •

Lectures #13-14

25 / 34

Binary Search Trees BST Deletion

Third Case: Key is at a Node with One Child

ldea:

Nodes Visited (delete 10):

- Start at 6 :
- Next node

Mike Jacobson (University of Calgary)

Binary Search Trees	BST Deletion

Algorithm and Analysis

Extension of Algorithm:

Mike Jacobson (University of Calgary)

Algorithm and Analysis

Correctness and Efficiency For This Case:

Extension of Algorithm:

else {

}

۲

٢

else if (T.left == null)

else if (T.right == null)

Correctness and Efficiency For This Case:

- •
- •

Computer Science 331

Binary Search Trees BST Deletion

Binary Search Trees	BST Deletion

Computer Science 331

Fourth Case: Key is at a Node with Two Children

Idea:

Nodes Visited (delete 6):

- Start at 6 :
- ٩
- •
- ٩

Lectures #13-14

29 / 34

Lectures #13-14

Binary Search Trees Complexity Discussion

More on Worst Case

All primitive operations (search, insert, delete) have worst-case complexity $\Theta(n)$

- all nodes have exactly one child (i.e., tree only has one leaf)
- Eg. will occur if elements are inserted into the tree in ascending (or descending) order

On average, the complexity is $\Theta(\log n)$

• Eg. if the tree is full, the height of the tree is $h = \log_2(n+1) - 1$

Computer Science 331

Need techniques to ensure that all trees are close to full

- want $h \in \Theta(\log n)$ in the worst case
- one possibility: red-black trees (next three lectures)

Lectures #13-14 33 / 34

Mike Jacobson (University of Calgary)

Computer Science 331

Lectures #13-14 34 / 3

References

Trees and Binary Trees:

• Text, Sections 7.1-7.3 Discussed in more detail, including algorithms for tree traversals

Binary Search Trees:

• Text, Section 10.1