Outline

@ The Dictionary ADT
Computer Science 331 @ Binary Trees

Binary Search Trees @ Definitions
@ Relationship Between Size and Depth

Mike Jacobson © Binary Search Trees
Definition
Searching

°
Department of Computer Science)
@ Finding an Element with Minimal Key
°
°

University of Calgary

BST Insertion
BST Deletion
o Complexity Discussion

Lectures #13-14

@ References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 1/34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 2 /34

The Dictionary ADT Binary Trees Definitions

The Dictionary ADT Binary Tree

A dictionary is a finite set (no duplicates) of elements.
A binary tree T is a hierarchical, recursively defined data structure,

Each element is assumed to include .. \
consisting of a set of vertices or nodes.

o A key, used for searches.

o Keys are required to belong to some ordered set.

Ol] o A binary tree T is either
o The keys of the elements of a dictionary are required to be distinct.

o) @ an “empty tree,”
@ Additional data, used for other processing.

or
Permits the following operations: @ a structure that includes

@ search by key o the root of T (the node at the top)
o the left subtree T; of T ...

e insert (key/data pair) o the right subtree Tg of T ...

© delete an element with specified key ... where both T; and Tg are also binary trees.

Similar to Java's Map (unordered) and SortedMap (ordered) interfaces.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 3/34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 4 /34

Binary Trees Definitions Binary Trees Definitions

Example and Implementation Details Additional Terminology

Additional terms related to binary trees:

Example: Each node has a:
o siblings:
@ parent:
o descendant (of N):
o left child: o ancestor (of N):
o leaf:
o size:
o right child: o depth (of N):
o height:
Note: depth and height are sometimes (as in the text) defined in terms of
number of nodes as opposed to number of edges.
Mike Jacobson_(University of Calgary) Computer Science 331 Lectures #13-14 6 / 34

Binary Trees Relationship Between Size and Depth Binary Trees Relationship Between Size and Depth

Size vs. Depth: One Extreme Size vs. Depth: Another Extreme

e Size:
@ Height:
@ Relationship:
e Size:
@ Height:
@ Relationship:
This binary tree is said to be full-

@ all leaves have the same depth

@ all non-leaf nodes have exactly)) i
. Essentially a linked list!
two children

Upper bound: a binary tree of height h has size at most Lower bound: a binary tree with height h has size at least

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 7 /34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 8 /34

Binary Search Trees Definition Binary Search Trees Definition

Binary Search Tree Binary Search Tree Property

A binary search tree T is a data structure that can be used to store and
manipulate a finite ordered set or mapping. Binary Search Tree Property: If T is nonempty, then

© T is a binary tree @ The left subtree T, is a binary search tree including all dictionary

@ Each element of the dictionary is stored at a node of T, so elements whose keys are less than the key of the element at the root

@ The right subtree Tg is a binary search tree including all dictionary
elements whose keys are greater than the key of the element at the

set size =size of T

@ In order to support efficient searching, elements are arranged to root
satisfy the Binary Search Tree Property ...

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 9 /34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 10 / 34

Binary Search Trees Definition Binary Search Trees Definition

Example Binary Search Tree Data Structure

One binary search tree for a dictionary including elements with keys public class BST<E extends Comparable<E>,V> {
protected bstNode<E,V> root;
{1,3,5,6,7,10}
protected class bstNode<E,V> {
E key;

V value;
bstNode<E,V> left;
bstNode<E,V> right;
}
}

bstNode can also include a reference to its parent

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 11 / 34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 12 / 34

Binary Search Trees Searching Binary Search Trees Searching

Specification of “Search” Problem: Searching: An Example

Precondition 1: Searching for 5:
a) T is a BST storing values of some type V along with keys of type E ‘
b) key is an element of type E stored with a value of type Vin T

Postcondition 1: ’ 0

a) Value returned is (a reference to) the value in T with key key

b) T and key are not changed ‘ ‘ ‘
Precondition 2: same, but key is not in T Nodes Visited:

Postcondition 2: o Start at 6 -

a) A notFoundException is thrown @ Next node

b) T and key are not changed @ Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 13 / 34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 14 / 34

Binary Search Trees Searching Binary Search Trees Searching

A Recursive Search Algorithm Partial Correctness

public V search(bstNode<E,V> T, E key)
throws notFoundException { Proved by induction on the height of T:
if (T == null)
else if (key.compareTo(T.key) == 0)

else if (key.compareTo(T.key) < 0)

else

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 15 / 34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 16 / 34

Binary Search Trees Searching Binary Search Trees Finding an Element with Minimal Key

Termination and Running Time Minimum Finding: The Idea

Let Steps(T) be the number of steps used to search in a BST codeT in the
worst case. Then there are positive constants ¢, ¢ and ¢3 such that ‘

a if height(T) = —1, ‘ a

o if height(T) =0,

Steps(T) < .
c3 + max(Steps(T.1left), Steps(T.right)) ‘ ‘ ‘

if height(T) > 0.

Exercise: Use this to prove that

Idea:
Steps(T) < c3 x height(T) + max(c1,) °
Exercise: Prove that Steps(T) > height(T) as well. °
— The worst-case cost to search in T is in ©(height(T)).
Example:
Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 17 / 34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 18 / 34

Binary Search Trees Finding an Element with Minimal Key Binary Search Trees Finding an Element with Minimal Key

A Recursive Minimum-Finding Algorithm Analysis: Correctness and Running Time

// Precondition: T is non-null

// Postcondition: returns node with minimal key,
// null if T is empty Partial Correctness (tree of height h):

e Exercise (similar to proof for Search)
public bstNode<E,V> findMin(bstNode<E,V> T) {
if (T == null) Termination and Bound on Running Time (tree of height h):
@ worst case running time is ©(h) (and hence ©(n
else if (T.left == null) nning (h) { (n))
@ Proof: exercise

else

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 19 / 34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 20 / 34

Binary Search Trees BST Insertion Binary Search Trees BST Insertion

Insertion: An Example A Recursive Insertion Algorithm

° // Non-recursive public function calls recursive worker function
public void insert(E key, V value)

’ “ { root = insert(root, key, Value); }
protected
‘ ’ ’ bstNode<E,V> insert(bstNode<E,V> T, E newKey, V newValue) {

if (T == null)

Idea: else if (newKey.compareTo(T.key) < 0)
Nodes Visited (inserting 9): else if (newKey.compareTo(T.key) > 0)
e Start at 6:
else
@ Next node
@ Next node return T;
@ Next node ¥
Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 21/ 34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 22 /34

Binary Search Trees BST Insertion Binary Search Trees BST Deletion

Analysis: Correctness and Running Time Deletion: Four Important Cases

Partial Correctness (tree of height h): ’ G
e Exercise (similar to proof for Search)
Termination and Bound on Running Time (tree of height h): ‘ ’ ’

@ worst case running time is ©(h) (and hence ©(n)) Key is/has

© Not Found (Eg: Delete 8)
@ At a Leaf (Eg: Delete 7)

© One Child (Eg: Delete 10)
© Two Children (Eg: Delete 6)

@ Proof: exercise

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 23 /34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 24 [34

Binary Search Trees BST Deletion Binary Search Trees BST Deletion

First Case: Key Not Found Algorithm and Analysis

° protected bstNode<E,V> delete(bstNode<E,V> T, E key) {
if (T !'= null) {

if (key.compareTo(T.key) < 0)
T.left = delete(T.left, key);
else if (key.compareTo(T..key) > 0)

‘ ’ ’ T.right = delete(T.right,key);
else if ...

// found node with given key

Idea: }
else
Nodes Visited (delete 8): throw new notFoundException();
return T;
@ Startat 6: }

Next node . :
Correctness and Efficiency For This Case:

e tree is not modified if key is not found (base case will be reached)

°
@ Next node
° @ worst-case cost ©(h) (same as search)

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 25/ 34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 26 [/ 34

Binary Search Trees BST Deletion Binary Search Trees BST Deletion

Second Case: Key is at a Leaf Algorithm and Analysis

Extension of Algorithm:
’ G else if ()

Correctness and Efficiency For This Case:

Idea: °

Nodes Visited (delete 7):

o
o
o Start at 6 :
o

@ Next node

o Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 27 [34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 28 [/ 34

Binary Search Trees BST Deletion

Third Case: Key is at a Node with One Child

Idea:

Nodes Visited (delete 10):
e Start at 6:

@ Next node
Mike Jacobson (University of Calgary) Computer Science 331

Binary Search Trees BST Deletion

Lectures #13-14

Fourth Case: Key is at a Node with Two Children

Idea:

Nodes Visited (delete 6):
@ Start at 6:
°

Mike Jacobson (University of Calgary) Computer Science 331

Lectures #13-14

29 / 34

31/ 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else if (T.left == null)

else if (T.right == null)

Correctness and Efficiency For This Case:
o

Mike Jacobson (University of Calgary) Computer Science 331

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else {
+
Correctness and Efficiency For This Case:
o
o
Mike Jacobson (University of Calgary) Computer Science 331

Lectures #13-14

Lectures #13-14

30 / 34

32/ 34

Binary Search Trees = Complexity Discussion References

More on Worst Case References

All primitive operations (search, insert, delete) have worst-case
complexity ©(n)
o all nodes have exactly one child (i.e., tree only has one leaf)

. .) :)) Trees and Binary Trees:
e Eg. will occur if elements are inserted into the tree in ascending (or

. @ Text, Sections 7.1-7.3 Discussed in more detail, including algorithms
descending) order
for tree traversals

On average, the complexity is ©(log n)

.))) Binary Search Trees:
o Eg. if the tree is full, the height of the tree is h = log,(n+ 1) — 1

@ Text, Section 10.1
Need techniques to ensure that all trees are close to full
e want h € O(log n) in the worst case

@ one possibility: red-black trees (next three lectures)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 33 /34 Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13-14 34 /34

	The Dictionary ADT
	Binary Trees
	Definitions
	Relationship Between Size and Depth

	Binary Search Trees
	Definition
	Searching
	Finding an Element with Minimal Key
	BST Insertion
	BST Deletion
	Complexity Discussion

	References

