
Computer Science 331

Binary Search Trees

Mike Jacobson

Department of Computer Science

University of Calgary

Lectures #13{14

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 1 / 34

Outline

1 The Dictionary ADT

2 Binary Trees
De�nitions
Relationship Between Size and Depth

3 Binary Search Trees
De�nition
Searching
Finding an Element with Minimal Key
BST Insertion
BST Deletion
Complexity Discussion

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 2 / 34

The Dictionary ADT

The Dictionary ADT

A dictionary is a �nite set (no duplicates) of elements.

Each element is assumed to include

A key, used for searches.

Keys are required to belong to some ordered set.
The keys of the elements of a dictionary are required to be distinct.

Additional data, used for other processing.

Permits the following operations:

search by key

insert (key/data pair)

delete an element with speci�ed key

Similar to Java's Map (unordered) and SortedMap (ordered) interfaces.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 3 / 34

Binary Trees De�nitions

Binary Tree

A binary tree T is a hierarchical, recursively de�ned data structure,
consisting of a set of vertices or nodes.

A binary tree T is either

an \empty tree,"

or

a structure that includes

the root of T (the node at the top)
the left subtree TL of T : : :

the right subtree TR of T : : :

: : : where both TL and TR are also binary trees.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 4 / 34



Binary Trees De�nitions

Example and Implementation Details

Example: Each node has a:

parent:

left child:

right child:

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 5 / 34

Binary Trees De�nitions

Additional Terminology

Additional terms related to binary trees:

siblings:

descendant (of N):

ancestor (of N):

leaf:

size:

depth (of N):

height:

Note: depth and height are sometimes (as in the text) de�ned in terms of
number of nodes as opposed to number of edges.

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 6 / 34

Binary Trees Relationship Between Size and Depth

Size vs. Depth: One Extreme

This binary tree is said to be full:

all leaves have the same depth

all non-leaf nodes have exactly
two children

Size:

Height:

Relationship:

Upper bound: a binary tree of height h has size at most

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 7 / 34

Binary Trees Relationship Between Size and Depth

Size vs. Depth: Another Extreme

Essentially a linked list!

Size:

Height:

Relationship:

Lower bound: a binary tree with height h has size at least

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 8 / 34



Binary Search Trees De�nition

Binary Search Tree

A binary search tree T is a data structure that can be used to store and
manipulate a �nite ordered set or mapping.

T is a binary tree

Each element of the dictionary is stored at a node of T , so

set size = size of T

In order to support e�cient searching, elements are arranged to
satisfy the Binary Search Tree Property : : :

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 9 / 34

Binary Search Trees De�nition

Binary Search Tree Property

Binary Search Tree Property: If T is nonempty, then

The left subtree TL is a binary search tree including all dictionary
elements whose keys are less than the key of the element at the root

The right subtree TR is a binary search tree including all dictionary
elements whose keys are greater than the key of the element at the
root

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 10 / 34

Binary Search Trees De�nition

Example

One binary search tree for a dictionary including elements with keys

f1; 3; 5; 6; 7; 10g

1

3

5

6

10

7

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 11 / 34

Binary Search Trees De�nition

Binary Search Tree Data Structure

public class BST<E extends Comparable<E>,V> {

protected bstNode<E,V> root;

...

protected class bstNode<E,V> {

E key;

V value;

bstNode<E,V> left;

bstNode<E,V> right;

...

}

}

bstNode can also include a reference to its parent

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 12 / 34



Binary Search Trees Searching

Speci�cation of \Search" Problem:

Precondition 1:

a) T is a BST storing values of some type V along with keys of type E

b) key is an element of type E stored with a value of type V in T

Postcondition 1:

a) Value returned is (a reference to) the value in T with key key

b) T and key are not changed

Precondition 2: same, but key is not in T

Postcondition 2:

a) A notFoundException is thrown

b) T and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 13 / 34

Binary Search Trees Searching

Searching: An Example

Searching for 5:

1

3

5

6

10

7

Nodes Visited:

Start at 6 :

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 14 / 34

Binary Search Trees Searching

A Recursive Search Algorithm

public V search(bstNode<E,V> T, E key)

throws notFoundException {

if (T == null)

else if (key.compareTo(T.key) == 0)

else if (key.compareTo(T.key) < 0)

else

}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 15 / 34

Binary Search Trees Searching

Partial Correctness

Proved by induction on the height of T:

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 16 / 34



Binary Search Trees Searching

Termination and Running Time

Let Steps(T) be the number of steps used to search in a BST codeT in the
worst case. Then there are positive constants c1, c2 and c3 such that

Steps(T) �

8>>>><
>>>>:

c1 if height(T) = �1,

c2 if height(T) = 0,

c3 +max(Steps(T.left); Steps(T.right))

if height(T) > 0.

Exercise: Use this to prove that

Steps(T) � c3 � height(T) + max(c1; c2)

Exercise: Prove that Steps(T) � height(T) as well.

=) The worst-case cost to search in T is in �(height(T)).

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 17 / 34

Binary Search Trees Finding an Element with Minimal Key

Minimum Finding: The Idea

1

3

5

6

10

7

Idea:

Example:

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 18 / 34

Binary Search Trees Finding an Element with Minimal Key

A Recursive Minimum-Finding Algorithm

// Precondition: T is non-null

// Postcondition: returns node with minimal key,

// null if T is empty

public bstNode<E,V> findMin(bstNode<E,V> T) {

if (T == null)

else if (T.left == null)

else

}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 19 / 34

Binary Search Trees Finding an Element with Minimal Key

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

worst case running time is �(h) (and hence �(n))

Proof: exercise

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 20 / 34



Binary Search Trees BST Insertion

Insertion: An Example

1

3

5

6

10

7

Idea:

Nodes Visited (inserting 9):

Start at 6 :

Next node

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 21 / 34

Binary Search Trees BST Insertion

A Recursive Insertion Algorithm

// Non-recursive public function calls recursive worker function

public void insert(E key, V value)

{ root = insert(root, key, Value); }

protected

bstNode<E,V> insert(bstNode<E,V> T, E newKey, V newValue) {

if (T == null)

else if (newKey.compareTo(T.key) < 0)

else if (newKey.compareTo(T.key) > 0)

else

return T;

}

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 22 / 34

Binary Search Trees BST Insertion

Analysis: Correctness and Running Time

Partial Correctness (tree of height h):

Exercise (similar to proof for Search)

Termination and Bound on Running Time (tree of height h):

worst case running time is �(h) (and hence �(n))

Proof: exercise

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 23 / 34

Binary Search Trees BST Deletion

Deletion: Four Important Cases

1

3

5

6

10

7

Key is/has : : :

1 Not Found (Eg: Delete 8)

2 At a Leaf (Eg: Delete 7)

3 One Child (Eg: Delete 10)

4 Two Children (Eg: Delete 6)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 24 / 34



Binary Search Trees BST Deletion

First Case: Key Not Found

1

3

5

6

10

7

Idea:

Nodes Visited (delete 8):

Start at 6 :

Next node

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 25 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

protected bstNode<E,V> delete(bstNode<E,V> T, E key) {

if (T != null) {

if (key.compareTo(T.key) < 0)

T.left = delete(T.left, key);

else if (key.compareTo(T..key) > 0)

T.right = delete(T.right,key);

else if ...

// found node with given key

}

else

throw new notFoundException();

return T;

}

Correctness and E�ciency For This Case:

tree is not modi�ed if key is not found (base case will be reached)

worst-case cost �(h) (same as search)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 26 / 34

Binary Search Trees BST Deletion

Second Case: Key is at a Leaf

1

3

5

6

10

7

Idea:

Nodes Visited (delete 7):

Start at 6 :

Next node

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 27 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else if ()

Correctness and E�ciency For This Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 28 / 34



Binary Search Trees BST Deletion

Third Case: Key is at a Node with One Child

1

3

5

6

10

7

Idea:

Nodes Visited (delete 10):

Start at 6 :

Next node

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 29 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else if (T.left == null)

else if (T.right == null)

Correctness and E�ciency For This Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 30 / 34

Binary Search Trees BST Deletion

Fourth Case: Key is at a Node with Two Children

1

3

5

6

10

7

Idea:

Nodes Visited (delete 6):

Start at 6 :

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 31 / 34

Binary Search Trees BST Deletion

Algorithm and Analysis

Extension of Algorithm:

else {

}

Correctness and E�ciency For This Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 32 / 34



Binary Search Trees Complexity Discussion

More on Worst Case

All primitive operations (search, insert, delete) have worst-case
complexity �(n)

all nodes have exactly one child (i.e., tree only has one leaf)

Eg. will occur if elements are inserted into the tree in ascending (or
descending) order

On average, the complexity is �(log n)

Eg. if the tree is full, the height of the tree is h = log2(n + 1)� 1

Need techniques to ensure that all trees are close to full

want h 2 �(log n) in the worst case

one possibility: red-black trees (next three lectures)

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 33 / 34

References

References

Trees and Binary Trees:

Text, Sections 7.1-7.3 Discussed in more detail, including algorithms
for tree traversals

Binary Search Trees:

Text, Section 10.1

Mike Jacobson (University of Calgary) Computer Science 331 Lectures #13{14 34 / 34


	The Dictionary ADT
	Binary Trees
	Definitions
	Relationship Between Size and Depth

	Binary Search Trees
	Definition
	Searching
	Finding an Element with Minimal Key
	BST Insertion
	BST Deletion
	Complexity Discussion

	References

