Outline

Computer Science 331
 Average Case Analysis: Binary Search Trees

Mike Jacobson

Department of Computer Science
University of Calgary
Lecture \#15

```
Bounds on Height: Worst- and Average-Case
```

If a binary search tree T has size n and height h then

$$
n \leq 2^{h+1}-1, \quad \text { so that } \quad h \geq \log _{2}(n+1)-1
$$

and

$$
n \geq h+1, \quad \text { so that } h \leq n-1 .
$$

Worst Case: These bounds cannot be improved.
In particular, $h=n-1$ in some cases.
Average Case: It seems that $h \in \Theta(\log n)$ most of the time

Objective:

- Prove that the height of a binary search tree really is logarithmic in its size, "most of the time."

Difficulty:

- This - or any other "average case analysis" - requires an assumption about how frequently each binary search tree (of a given size) occurs.
- If our assumption is inaccurate then so is our analysis!

Problem: There are infinitely many binary search trees of a given size!
Consider the following binary search trees, each obtained by inserting four elements into an empty tree.

Insertion Order: b, z, k, f
Insertion Order: 1, 4, 3, 2

Concepts from Probability Theory

These will also be useful for the analysis of operations on hash tables and the QuickSort algorithm, later in the course.

- Sample Space: Set S of events that we are interested in. We will be interested in situations where S is a finite set.
- Probability Distribution: Function $\operatorname{Pr}: S \rightarrow \mathbb{R}$ such that

$$
0 \leq \operatorname{Pr}(s) \leq 1 \text { for all } s \in S \quad \text { and } \quad \sum_{s \in S} \operatorname{Pr}(s)=1 .
$$

- Random Variable: A real valued function of S. That is, a function $X: S \rightarrow \mathbb{R}$.
- Expected Value of a Random Variable: The expected value of a random variable X is

$$
\mathrm{E}[X]=\sum_{s \in S} \operatorname{Pr}(s) \cdot X(s) .
$$

Distribution of Binary Search Trees
 Useful Property of Shape (cont.)

If

- T_{1} is generated by inserting a sequence of values $x_{1}, x_{2}, \ldots, x_{n}$ into an initially empty tree, and
- T_{2} is generated by inserting a sequence of values $y_{1}, y_{2}, \ldots, y_{n}$ into an initially empty tree, and
- for all i, j such that $1 \leq i, j \leq n$,

$$
x_{i} \leq x_{j} \text { if and only if } y_{i} \leq y_{j}
$$

then T_{1} and T_{2} have the same shape - and the same height.

Conclusion: It is sufficient to consider the relative order of the inserted keys when considering the height of a binary search tree.

Condition and Assumption for Analysis:

- Condition: We will consider binary search trees of size n, produced by inserting $1,2, \ldots, n$ into an empty tree in some order
- Fact: There are $1 \times 2 \times \cdots \times n=n$! possible relative orders of these values
- Assumption: We will assume that each of these relative orders is equally likely.

Insertion order appears above each tree.
$T_{1}: 1,2,3$
$T_{3}: 2,1,3$
$T_{5}: 3,1,2$

$T_{2}: 1,3,2$

$T_{4}: 2,3,1$

$T_{6}: 3,2,1$

Note: Tree shapes do not all occur with the same probability (under our assumption).

Making This Formal:

- When considering binary search trees of size n we will use a sample space S_{n} of size $n!$ - whose elements correspond to the $n!$ relative orderings of the inserted keys
- According to the assumptions that have been stated we will be using the uniform distribution in our analysis:

$$
\operatorname{Pr}(s)=\frac{1}{\left|S_{n}\right|}=\frac{1}{n!} \quad \text { for all } s \in S_{n}
$$

Suppose i is an integer between 1 and n.

One Way To Choose a Relative Ordering Starting with i :

- Begin with i as the first thing to list
- Pick one of the ($n-1$)! relative orderings uniformly and independently. Use this to determine the ordering for the other values that should be listed after i

Another Way To Choose a Relative Ordering Starting with i :

- Begin with i as the first thing to list
- Choose one of the $\binom{n-1}{i-1}$ subsets of the remaining positions of size $i-1$, from the $n-1$ positions that are left after this - the integers between 1 and $i-1$ will be placed here
- Choose one of the ($i-1$)! relative orderings for the integers less than i. Insert the values $1,2, \ldots, i-1$ in the positions chosen in the previous step using this ordering
- Choose one of the ($n-i$)! relative orderings for the integers between $i-1$ and n. Insert the values $i+1, i+2, \ldots, n$ in the positions that are left using this ordering.

Trees with Root i

Exponential Height with Root i

Crucial Observation: Each of these methods produces exactly the same set of relative orderings, and every ordering that starts with i is listed exactly once, in each case.
The corresponding trees are as follows:

R_{i-1} : BST with $i-1$ nodes $1,2, \ldots, i-1$

- all ($i-1$)! relative orders equally likely
R_{n-i} : BST with $n-i$ nodes $i+1, i+2, \ldots, n$
- all ($n-i$)! relative orders equally likely

Recurrence for Y_{n}

Since every binary search tree with size one has height zero,

$$
Y_{1}=2^{0}=1
$$

A binary search tree with n nodes $1,2, \ldots, n$ has root i with likelihood $1 / n$ (under our assumption). Thus

$$
\begin{aligned}
Y_{n} & =\frac{1}{n} \sum_{i=1}^{n} Y_{n, i} \\
& \leq \frac{2}{n} \sum_{i=1}^{n}\left(Y_{n-i}+Y_{i-1}\right) \\
& =\frac{4}{n} \sum_{i=0}^{n-1} Y_{i} .
\end{aligned}
$$

Average Height Relating Height and Exponential Height
Useful Property of $f(x)=2^{x}$
Consider the function $f(x)=2^{x}$:

This function is convex: If $\alpha \geq 0, \beta \geq 0$, and $\alpha+\beta=1$ then

$$
f\left(\alpha x_{1}+\beta x_{2}\right) \leq \alpha f\left(x_{1}\right)+\beta f\left(x_{2}\right)
$$

Let X_{n} be the average height of a binary search tree with size n (under our assumption). Then

$$
X_{n}=\frac{1}{m}\left(h_{1}+h_{2}+\cdots+h_{m}\right)
$$

where $m=n!$ and $h_{i}=\operatorname{height}\left(T_{i}\right)$.

Consequence of Previous Inequality:

$$
2^{X_{n}} \leq \frac{1}{m}\left(2^{h_{1}}+2^{h_{2}}+\cdots+2^{h_{m}}\right)=Y_{n}
$$

Note that this implies

$$
X_{n} \leq \log _{2} Y_{n}
$$

Corollaries: Under Our Assumption about Construction of Trees
(1) Average height of a binary search tree of size n is

$$
X_{n} \leq \log _{2} Y_{n} \leq \log _{2}\left(\frac{1}{4}\binom{n+3}{3}\right)
$$

so that $X_{n} \leq \log _{2} n^{3}=3 \log _{2} n$ for sufficiently large n.
(2) If c is a positive integer, n is sufficiently large, and T is a randomly constructed BST with size n, then the probability that

$$
\operatorname{height}(T) \geq 3 c \log _{2} n
$$

is less than $\frac{1}{c}$.

