
Computer Science 331
Average Case Analysis: Binary Search Trees

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #15

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 1 / 22

Outline

1 Motivation and Objective

2 Distribution of Binary Search Trees

3 Exponential-Height
De�nition
Upper Bound on Average Exponential Height

4 Average Height
Relating Height and Exponential Height

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 2 / 22

Motivation and Objective

Cost of Binary Search Tree Operations

Operations on a Binary Search Tree T : : :

Require a walk down (part of) a path from the root to a leaf of the
tree

Constant time is required for each node that is visited

Thus, the worst-case time of each operation is:

linear in the height of T

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 3 / 22

Motivation and Objective

Bounds on Height: Worst- and Average-Case

If a binary search tree T has size n and height h then

n � 2h+1 � 1; so that h � log2(n + 1)� 1

and
n � h + 1; so that h � n � 1 :

Worst Case: These bounds cannot be improved.
In particular, h = n � 1 in some cases.

Average Case: It seems that h 2 �(log n) most of the time.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 4 / 22

Motivation and Objective

Objective, and Di�culty

Objective:

Prove that the height of a binary search tree really is logarithmic in
its size, \most of the time."

Di�culty:

This | or any other \average case analysis" | requires an
assumption about how frequently each binary search tree (of a given
size) occurs.

If our assumption is inaccurate then so is our analysis!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 5 / 22

Motivation and Objective

Concepts from Probability Theory

These will also be useful for the analysis of operations on hash tables and
the QuickSort algorithm, later in the course.

Sample Space: Set S of events that we are interested in. We will be
interested in situations where S is a �nite set.

Probability Distribution: Function Pr : S ! R such that

0 � Pr(s) � 1 for all s 2 S and
X
s2S

Pr(s) = 1:

Random Variable: A real valued function of S . That is, a function
X : S ! R.

Expected Value of a Random Variable: The expected value of a
random variable X is

E[X] =
X
s2S

Pr(s) � X (s):

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 6 / 22

Distribution of Binary Search Trees

Useful Property of Shape

Problem: There are in�nitely many binary search trees of a given size!

Consider the following binary search trees, each obtained by inserting four
elements into an empty tree.

4

1

3

2

Insertion Order: 1, 4, 3, 2

b

z

k

f

Insertion Order: b, z, k, f

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 7 / 22

Distribution of Binary Search Trees

Useful Property of Shape (cont.)

If

T1 is generated by inserting a sequence of values x1; x2; : : : ; xn into an
initially empty tree, and

T2 is generated by inserting a sequence of values y1; y2; : : : ; yn into an
initially empty tree, and

for all i ; j such that 1 � i ; j � n,

xi � xj if and only if yi � yj

then T1 and T2 have the same shape | and the same height.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 8 / 22

Distribution of Binary Search Trees

Assumption for Analysis

Conclusion: It is su�cient to consider the relative order of the inserted
keys when considering the height of a binary search tree.

Condition and Assumption for Analysis:

Condition: We will consider binary search trees of size n, produced
by inserting 1; 2; : : : ; n into an empty tree in some order

Fact: There are 1� 2� � � � � n = n! possible relative orders of these
values

Assumption: We will assume that each of these relative orders is
equally likely.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 9 / 22

Distribution of Binary Search Trees

Ideas from Probability Theory, Applied

Making This Formal:

When considering binary search trees of size n we will use a sample

space Sn of size n! | whose elements correspond to the n! relative
orderings of the inserted keys

According to the assumptions that have been stated we will be using
the uniform distribution in our analysis:

Pr(s) =
1

jSnj
=

1

n!
for all s 2 Sn

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 10 / 22

Distribution of Binary Search Trees

Possible Relative Orders and Trees When n = 3

Insertion order appears above each tree.

T1: 1, 2, 3

1

2

3

T2: 1, 3, 2

1

2

3

T3: 2, 1, 3

31

2

T4: 2, 3, 1

31

2

T5: 3, 1, 2

2

3

1

T6: 3, 2, 1

2

1

3

Note: Tree shapes do not all occur with the same probability (under our
assumption).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 11 / 22

Exponential-Height De�nition

Exponential-Height

If a binary search tree has height h, its exponential-height is 2h.

Heights and Exponential Heights of Previous Trees

i 1 2 3 4 5 6

height(Ti) 2 2 1 1 2 2
exp-height(Ti) 4 4 2 2 4 4

Average Exponential Height if n = 3 (Written as Yn):

E(exp-height) = Y3 =
1

6
(4 + 4 + 2 + 2 + 4 + 4) =

10

3

Goal: determine an upper bound on Yn; derive bound on avg. height

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 12 / 22

Exponential-Height Upper Bound on Average Exponential Height

Trees with Root i

Suppose i is an integer between 1 and n.

One Way To Choose a Relative Ordering Starting with i :

Begin with i as the �rst thing to list

Pick one of the (n � 1)! relative orderings uniformly and
independently. Use this to determine the ordering for the other values
that should be listed after i

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 13 / 22

Exponential-Height Upper Bound on Average Exponential Height

Trees with Root i

Another Way To Choose a Relative Ordering Starting with i :

Begin with i as the �rst thing to list

Choose one of the
�
n�1
i�1

�
subsets of the remaining positions of

size i � 1, from the n � 1 positions that are left after this | the
integers between 1 and i � 1 will be placed here

Choose one of the (i � 1)! relative orderings for the integers less
than i . Insert the values 1; 2; : : : ; i � 1 in the positions chosen in the

previous step using this ordering

Choose one of the (n � i)! relative orderings for the integers
between i � 1 and n. Insert the values i + 1; i + 2; : : : ; n in the

positions that are left using this ordering.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 14 / 22

Exponential-Height Upper Bound on Average Exponential Height

Trees with Root i

Crucial Observation: Each of these methods produces exactly the same
set of relative orderings, and every ordering that starts with i is listed
exactly once, in each case.

The corresponding trees are as follows:

Ri−1 Rn−i

i

Ri�1 : BST with i � 1 nodes 1; 2; : : : ; i � 1

all (i � 1)! relative orders equally likely

Rn�i : BST with n � i nodes i + 1; i + 2; : : : ; n

all (n � i)! relative orders equally likely

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 15 / 22

Exponential-Height Upper Bound on Average Exponential Height

Exponential Height with Root i

Bounds on height and exponential height:

If a tree T has a left subtree with height hL and a right subtree with
height hR , then height of T is 1 + max(hL; hR)

If a tree T has a left subtree with exp-height HL and a right subtree
with exp-height HR , then the exp-height of T is

2 �max(HL;HR) � 2 � (HL + HR) :

Consequence: The average exponential-height of a binary search tree with
n nodes (1; 2; : : : ; n) and root i is

Yn;i = 2 �max(Yi�1;Yn�i) � 2 � (Yi�1 + Yn�i)

Relationship holds for i = 1 and i = n if we \de�ne" Y0 to be 0:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 16 / 22

Exponential-Height Upper Bound on Average Exponential Height

Recurrence for Yn

Since every binary search tree with size one has height zero,

Y1 = 20 = 1 :

A binary search tree with n nodes 1; 2; : : : ; n has root i with likelihood 1=n
(under our assumption). Thus

Yn =
1

n

nX
i=1

Yn;i

�
2

n

nX
i=1

(Yn�i + Yi�1)

=
4

n

n�1X
i=0

Yi :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 17 / 22

Exponential-Height Upper Bound on Average Exponential Height

Bounding Yn Using the Recurrence

It is possible to use mathematical induction to show that

4

n

n�1X
i=0

�
i + 3

3

�
=

4

n

�
n + 3

4

�
=

�
n + 3

3

�

where the binomial coe�cient

�
n

k

�
=

n!

k!(n � k)!
:

It is also easily checked that

Y1 = 1 =
1

4

�
1 + 3

3

�
:

These can be used with the previous inequality to prove that

Yn �
1

4

�
n + 3

3

�
=

(n + 3)(n + 2)(n + 1)

24

for every integer n � 1.
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 18 / 22

Average Height Relating Height and Exponential Height

Useful Property of f (x) = 2x

Consider the function f (x) = 2x :

0

5

10

15

20

25

0 1 2 3 4 5

2**x

This function is convex: If � � 0; � � 0; and �+ � = 1 then

f (�x1 + �x2) � �f (x1) + �f (x2) :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 19 / 22

Average Height Relating Height and Exponential Height

Useful Property of f (x) = 2x (cont.)

Theorem 1 (Jensen's Inequality)

For every integer m � 1 and positive values x1; x2; : : : ; xm,

f
�
1
m
(x1 + x2 + � � �+ xm)

�
�

1

m
(f (x1) + f (x2) + � � �+ f (xm))

if the function f is convex.

Can be proved by induction on m:

Because 2x is convex, Jensen's Inequality is applicable

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 20 / 22

Average Height Relating Height and Exponential Height

Application of Property

Let Xn be the average height of a binary search tree with size n (under our
assumption). Then

Xn =
1
m
(h1 + h2 + � � �+ hm)

where m = n! and hi = height(Ti):

Consequence of Previous Inequality:

2Xn � 1
m

�
2h1 + 2h2 + � � �+ 2hm

�
= Yn :

Note that this implies
Xn � log2 Yn :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 21 / 22

Average Height Relating Height and Exponential Height

Simpli�cation of Bound

Corollaries: Under Our Assumption about Construction of Trees

1 Average height of a binary search tree of size n is

Xn � log2 Yn � log2

�
1
4

�
n+3
3

��
;

so that Xn � log2 n
3 = 3 log2 n for su�ciently large n:

2 If c is a positive integer, n is su�ciently large, and T is a randomly
constructed BST with size n, then the probability that

height(T) � 3c log2 n

is less than 1
c
:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #15 22 / 22

	Motivation and Objective
	Distribution of Binary Search Trees
	Exponential-Height
	Definition
	Upper Bound on Average Exponential Height

	Average Height
	Relating Height and Exponential Height

