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De�nition De�nition and Example of a Red-Black Tree

De�nition of a Red-Black Tree

A red-black tree is a binary tree that can be used to implement the

\Dictionary" ADT (also \SortedSet" and \SortedMap" interfaces from the

JCF)

Internal Nodes are used to store elements of a dictionary.

Leaves are called \NIL nodes" and do not store elements of the set.

Every internal node has two children (either, or both, of which might

be leaves).

The smallest red-black tree has size one (single NIL node).

If the leaves (NIL nodes) of a red-black tree are removed then the

resulting tree is a binary search tree.
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De�nition De�nition and Example of a Red-Black Tree

Red-Black Properties

A binary search tree is a red-black tree if it satis�es the following:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (NIL) is black.

4 If a node is red, then both its children are black.

5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

Why these are useful:

height is in �(log n) in the worst case (tree with n internal nodes)

worst case complexity of search, insert, delete are in �(log n)
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De�nition De�nition and Example of a Red-Black Tree

Example
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\Black" internal nodes are drawn as circles

\Red" nodes are drawn as diamonds

NIL nodes (leaves) are drawn as black squares
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De�nition Implementation Details

Implementation Details

Example: Figure 13.1 on page 275 of the Cormen, Leiserson, Rivest, and

Stein book.

The color of a node can be represented by a Boolean value (eg,

true=black, false=red), so that only one bit is needed to store the

color of a node

To save space and simplify programming, a single sentinel can replace

all NIL nodes.

The \parent" of the root node is pointed to the sentinel as well.

An \empty" tree contains one single NIL node (the sentinel)
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Height-Balance Black-Height of a Node

Black-Height of a Node

The black-height of a node x ; denoted bh(x); is the number of black
nodes on any path from, but not including, a node x down to a leaf.

Example: In the previous red-black tree,

The black-height of the node with label 2 is:

The black-height of the node with label 4 is:

The black-height of the node with label 6 is:

The black-height of the node with label 8 is:

The black-height of the node with label 10 is:

Note: Red-Black Property #5 implies that bh(x) is well-de�ned for each

node x .
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Height-Balance The Main Theorem: Worst Case Height Bound

The Main Theorem

Theorem 1

If T is a red-black tree with n nodes then the height of T is at most

2 log2(n + 1):

Outline of proof:

prove a lower bound on tree size in terms of black-height

prove an upper bound on height in terms of black-height of the tree

combine to prove main theorem
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Height-Balance First Lemma: Bounding Size Using Black-Height

Bounding Size Using Black-Height

Lemma 2

For each node x, the subtree with root x includes at least 2bh(x)� 1 nodes.

Method of Proof: mathematical induction on height of the subtree with

root x (using the strong form of mathematical induction)

Base case: prove that the claim holds for subtrees of height 0

Inductive step: prove, for all h � 0; that if the lemma is true for all

subtrees with height at most h � 1 then it also holds for all subtrees

with height h:
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Height-Balance First Lemma: Bounding Size Using Black-Height

Base Case (h = 0)
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Height-Balance First Lemma: Bounding Size Using Black-Height

Notation for Inductive Step

b Black-height of x

bL Black-height of left child of x

bR Black-height of right child of x

Tx Subtree with root x

h Height of Tx

hL Height of left subtree of Tx

hR Height of right subtree of Tx

n Size of Tx

nL Size of left subtree of Tx

nR Size of right subtree of Tx
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Height-Balance First Lemma: Bounding Size Using Black-Height

Useful Properties Involving Size and Height

n = nL + nR + 1: The n nodes of Tx are:

the nL nodes of the left subtree of Tx

the nR nodes of the right subtree of Tx

one more node | the root x of Tx

h = 1 +max(hL; hR); so hL � h � 1 and hR � h � 1

height of any tree (including Tx) is the maximum length of any path

from the root to any leaf

it follows by this de�nition that h = 1 +max(hL; hR)

the remaining inequalities are now easily established
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Height-Balance First Lemma: Bounding Size Using Black-Height

Useful Property Involving Black-Height

bL � b � 1 and bR � b � 1.

Case 1: x has color red

both children of x have color black (Red-Black Property #4)

Red-Black Property #5 implies that bL = bR = b � 1.

Case 2: x has color black.

children of x could each be either red or black

bL � b � 1; because by the de�nition of \black-height"

bL =

(
b if the left child of x is red

b � 1 if the left child of x is black.

an analogous argument shows that bR � b � 1
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Height-Balance First Lemma: Bounding Size Using Black-Height

Inductive Step

Let h be an integer such that h � 0:

Inductive Hypothesis: Suppose the claimed result holds for every node y

such that the height of the tree with root y is less than h.

Let x be a node such that the height of the tree Tx is h:

Let n be the number of nodes of Tx :

Required to Show: n � 2bh(x) � 1 holds for Tx ; assuming the inductive

hypothesis.
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Height-Balance First Lemma: Bounding Size Using Black-Height

Proof of Inductive Step
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Height-Balance Second Lemma: Bounding Height Using Black-Height

Bounding Height Using Black-Height

Lemma 3

If T is a red-black tree then bh(r) � h=2 where r is the root of T and h is

the height of T :

Proof.

Assume that T has height h :
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Height-Balance Proof of the Main Theorem

Proof of the Main Theorem

Theorem 4

If T is a red-black tree with n nodes then the height of T is at most

2 log2(n + 1):

Proof.

Let r be the root of T : The two Lemmas state that:

n � 2bh(r) � 1 and bh(r) � h=2

Putting these together yields:

) )

as required.
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Searches

Searching in a Red-Black Tree

Searching in a red-black tree is almost the same as searching in a binary

search tree.

Di�erence Between These Operations:

leaves are NIL nodes that do not store values

thus, unsuccessful searches end when a leaf is reached instead of

when a null reference is encountered

Worst-Case Time to Search in a Red-Black Tree:
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What's Next

What's Next?

Unfortunately, insertions and deletions are more complicated because we

need to preserve the \Red-Black Properties."

We will discuss these operations during the next two lectures.

Reference: To read ahead, please see

Chapter 13 of Introduction to Algorithms

(on reserve in the library)

for more information about red-black trees.

Section 10.5 of the text discusses red-black trees.
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