

Outline

Definition of a Red-Black Tree

A **red-black tree** is a binary tree that can be used to implement the "Dictionary" ADT (also "SortedSet" and "SortedMap" interfaces from the JCF)

- Internal Nodes are used to store elements of a dictionary.
- Leaves are called "NIL nodes" and do not store elements of the set.
- Every internal node has two children (either, or both, of which might be leaves).
- The smallest red-black tree has size one (single NIL node).
- If the leaves (NIL nodes) of a red-black tree are removed then the resulting tree is a binary search tree.

Red-Black Properties

A binary search tree is a *red-black* tree if it satisfies the following:

- Every node is either red or black.
- The root is black.
- Severy leaf (NIL) is black.
- If a node is red, then both its children are black.
- For each node, all paths from the node to descendant leaves contain the same number of black nodes.

Why these are useful:

- height is in $\Theta(\log n)$ in the worst case (tree with *n* internal nodes)
- worst case complexity of search, insert, delete are in $\Theta(\log n)$

- "Black" internal nodes are drawn as circles
- "Red" nodes are drawn as diamonds
- NIL nodes (leaves) are drawn as black squares

Implementation Details

Example: Figure 13.1 on page 275 of the Cormen, Leiserson, Rivest, and Stein book.

- The color of a node can be represented by a Boolean value (eg, true=black, false=red), so that only one bit is needed to store the color of a node
- To save space and simplify programming, a single sentinel can replace all NIL nodes.
- The "parent" of the root node is pointed to the sentinel as well.
- An "empty" tree contains one single NIL node (the sentinel)

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #16 6 / 1

Height-Balance The Main Theorem: Worst Case Height Bound

The Main Theorem

Theorem 1

If T is a red-black tree with n nodes then the height of T is at most $2 \log_2(n+1)$.

Outline of proof:

- prove a *lower bound* on tree size in terms of black-height
- prove an upper bound on height in terms of black-height of the tree
- combine to prove main theorem

Black-Height of a Node

Mike Jacobson (University of Calgary)

The **black-height** of a node x, denoted bh(x), is the number of black nodes on any path from, but not including, a node x down to a leaf.

Computer Science 331

Height-Balance Black-Height of a Node

Example: In the previous red-black tree,

- The black-height of the node with label 2 is:
- The black-height of the node with label 4 is:
- The black-height of the node with label 6 is:
- The black-height of the node with label 8 is:
- The black-height of the node with label 10 is:

Note: Red-Black Property #5 implies that bh(x) is well-defined for each node x.

Lecture #16

Height-Balance First Lemma: Bounding Size Using Black-Height

Bounding Size Using Black-Height

Base Case (h = 0)

Lemma 2

For each node x, the subtree with root x includes at least $2^{bh(x)} - 1$ nodes.

Method of Proof: mathematical induction on height of the subtree with root x (using the strong form of mathematical induction)

- Base case: prove that the claim holds for subtrees of height 0
- Inductive step: prove, for all $h \ge 0$, that if the lemma is true for all subtrees with height at most h 1 then it also holds for all subtrees with height h.

Mike Jac	zobson (University of Calgary)	Computer Science 331	Lecture #16 9 / 19	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #16	10 / 19
Height-Balance First Lemma: Bounding Size Using Black-Height Notation for Inductive Step				Height-Balance First Lemma: Bounding Size Using Black-Height Useful Properties Involving Size and Height			
b b _L b _R T _x	Black-height of x Black-height of left Black-height of right Subtree with root x	child of <i>x</i> t child of <i>x</i>		$n = n_L + n_R + 1$. The n n • the n_L nodes of the l_R • the n_R nodes of the n • one more node — the	odes of T_x are: eft subtree of T_x right subtree of T_x e root x of T_x		
h h _L h _R n n _L nR	Height of T_x Height of left subtre Height of right subtr Size of T_x Size of left subtree of Size of right subtree	e of T_x ree of T_x of T_x of T_x		 h = 1 + max(h_L, h_R), so h height of any tree (in from the root to any it follows by this define the remaining inequal 	$h_L \leq h-1$ and $h_R \leq h-1$ including $\mathcal{T}_x)$ is the maximular leaf nition that $h=1+ ext{max}(h)$	1 um length of any p u _L , h _R) ished	path

Height-Balance First Lemma: Bounding Size Using Black-Height

Useful Property Involving Black-Height

 $b_L \geq b-1$ and $b_R \geq b-1$.

Case 1: x has color red

- both children of x have color black (Red-Black Property #4)
- Red-Black Property #5 implies that $b_L = b_R = b 1$.

Case 2: x has color black.

- children of x could each be either red or black
- $b_L \ge b 1$, because by the definition of "black-height"

$$b_L = egin{cases} b & ext{if the left child of } x ext{ is red} \ b-1 & ext{if the left child of } x ext{ is black}. \end{cases}$$

Computer Science 331

ullet an analogous argument shows that $b_R \geq b-1$

Mike Jacobson (University of Calgary)

Lecture #16 13 / 19

Height-Balance First Lemma: Bounding Size Using Black-Height

Proof of Inductive Step

Inductive Step

Let *h* be an integer such that $h \ge 0$.

Inductive Hypothesis: Suppose the claimed result holds for every node *y* such that the height of the tree with root *y* is *less than h*.

Let x be a node such that the height of the tree T_x is h.

Let *n* be the number of nodes of T_{χ} .

Required to Show: $n \ge 2^{bh(x)} - 1$ holds for T_x , assuming the inductive hypothesis.

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #16 14

Height-Balance Second Lemma: Bounding Height Using Black-Height

Bounding Height Using Black-Height

Lemma 3

If T is a red-black tree then $bh(r) \ge h/2$ where r is the root of T and h is the height of T.

Proof.

۲

Assume that T has height h:

- •

Height-Balance Proof of the Main Theorem

Proof of the Main Theorem

Theorem 4

If T is a red-black tree with n nodes then the height of T is at most $2 \log_2(n+1)$.

Proof.

Let r be the root of T. The two Lemmas state that:

$$n \geq 2^{bh(r)} - 1$$
 and $bh(r) \geq h/2$

Computer Science 331

What's Next

Putting these together yields:

as required.

Lecture #16 17 / 19

What's Next?

Mike Jacobson (University of Calgary)

Unfortunately, *insertions* and *deletions* are more complicated because we need to preserve the "Red-Black Properties."

We will discuss these operations during the next two lectures.

Reference: To read ahead, please see

Chapter 13 of *Introduction to Algorithms* (on reserve in the library)

for more information about red-black trees.

Section 10.5 of the text discusses red-black trees.

Searching in a Red-Black Tree

Searching in a red-black tree is *almost* the same as searching in a binary search tree.

Difference Between These Operations:

- leaves are NIL nodes that do not store values
- thus, unsuccessful searches end when a leaf is reached instead of when a null reference is encountered

Worst-Case Time to Search in a Red-Black Tree:

٩

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #16 18 /