
Computer Science 331
Red Black Trees: Deletions

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #18

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 1 / 30

Outline

1 Deletions: Outline and Strategy

Properties of a Red-Black Tree

Beginning of a Deletion

Deletion of a Black Node: Initialization

Two Easy Cases

2 Algorithm for Final Case

Identi�cation of Subcases

Adjustments for Cases

Partial Correctness

Termination and E�ciency

3 Reference

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 2 / 30

Deletions: Outline and Strategy Properties of a Red-Black Tree

Red-Black Properties

Recall that the following properties must be maintained (along with the

binary-search properties) when a deletion from a red-black tree is

performed:

1 Every node is either red or black.

2 The root is black.

3 Every leaf (NIL) is black.

4 If a node is red, then both its children are black.

5 For each node, all paths from the node to descendant leaves contain

the same number of black nodes.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 3 / 30

Deletions: Outline and Strategy Beginning of a Deletion

Beginning of a Deletion

Suppose we wish to delete an object with key k from a red black tree T .

if T does not include an object with key k then

T is not modi�ed; throw KeyNotFoundExcepction and terminate

else

Ignore the NIL nodes (for now)

Consider what would happen if the \standard" algorithm was applied

Let y point the the node that would be deleted

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 4 / 30



Deletions: Outline and Strategy Beginning of a Deletion

Clari�cation: What is y?

Speci�cally : : :

If at least one child of the object storing k is a leaf (that is, a NIL

node) then y is the node storing k

Otherwise y is the node storing the smallest key in the right subtree

with the node storing k as root

Please review the description of deletion of a node from a regular binary

search tree if this is not clear!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 5 / 30

Deletions: Outline and Strategy Beginning of a Deletion

Case 1: Deleted Node y was Red

Situation:

At least one child of y is a NIL node (because of the

choice of y)

y and a NIL child can be discarded, with the other child of y

promoted to replace y in T

Then T is still a red black tree. =) We are �nished!

Exercise: Con�rm that T really is still a red-black tree after a red node

has been removed (in the usual way).

The rest of the lecture concerns the case that the deleted node y was

black.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 6 / 30

Deletions: Outline and Strategy Deletion of a Black Node: Initialization

Case 2: Deleted Node was Black

Suppose we deleted (as described above) a black node y

Let x be the node that will be \promoted" to replace y . We have the

following possibilities:

Both children of y are NIL nodes

=) x is a single NIL node that replaces both of these.

One child of y is a NIL node

=) x is the other child (ie, the child of y that is not NIL)

Neither child of y is a NIL node

=) This case is impossible (because of the choice of y)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 7 / 30

Deletions: Outline and Strategy Deletion of a Black Node: Initialization

Possible Problems

1 Paths from nodes to leaves that included y are now missing one black

node =) black-height is not well-de�ned!
2 It is possible that either

x and its parent might both be red, or

x might be red and be the root

(Note that both cannot be true at the same time.)

There can be no other problems with the tree (yet!)

The rest of the notes are about how to correct these problems.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 8 / 30



Deletions: Outline and Strategy Deletion of a Black Node: Initialization

Example

1 4

6

15

16

20

10

182 8 12

Possible cases for x :

delete 1 : x = NIL (no problems!)

delete 8 : x = NIL (black height problem)

delete 18 : x = 20 (black height problem)

delete 6 : x = NIL (black height problem)

delete 10 : x = 15 (black height problem)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 9 / 30

Deletions: Outline and Strategy Deletion of a Black Node: Initialization

Initialization: Fixing \Black-Height"

Fixing Black-Height: Add two more kinds of nodes, to de�ne

black-height once again

Red-Black Node

Count as one black node on a path when

computing black-height.

Double-Black Node

Count as two black nodes on a path when

computing black-height.

In practice, can use a ag called, for example, \�xupRequired" to denote

the \extra" black colour.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 10 / 30

Deletions: Outline and Strategy Deletion of a Black Node: Initialization

Initialization: Fixing \Black-Height" (cont.)

Set the new type of x to be

Red-Black (if x was a red child of the deleted black node)

Double-Black (if x was a black child of a deleted black node)

Note: \Black-height" of nodes are well-de�ned again after this change!

Possible Cases, At This Point:

1 x is a red-black node.

2 x is a double-black node at the root.

3 x is a double-black node, not at the root.

In each case, there are no other problems in the tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 11 / 30

Deletions: Outline and Strategy Two Easy Cases

Two of These Cases are Easy!

Case 1: x is a red-black node.

Change x to a black node, and stop

Exercise: con�rm that T is a red-black tree after this change.

Case 2: x is a double-black node at the root.

Change x to a black node, and stop

Exercise: con�rm that T is a red-black tree after this change.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 12 / 30



Deletions: Outline and Strategy Two Easy Cases

Pseudocode to Finish Deletion of a Black Node

Pseudocode to �nish deletion if a black node was deleted and x points to

child being promoted:

Change the type of x as described above.

while x is double-black and not at the root do

Make an adjustment as described next

end while

if x is red-black or at the root then

Change x to a black node

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 13 / 30

Algorithm for Final Case Identi�cation of Subcases

Expanding the Remaining Case

One Major Subcase: x is the left child of its parent (� red or black)

T1 T2

β

αx

TR

Another Major Subcase: x is the right child of its parent.

The �rst of these subcases will be described in detail. The algorithm for

the second is almost identical.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 14 / 30

Algorithm for Final Case Identi�cation of Subcases

Expanding the First Subcase

Note: Black-height of � is at least two (Property #5)

T1 T2

αx

β

TTTT3 4 5 6

γ

δ

ζ

Various possibilities (depends on color of sibling of x)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 15 / 30

Algorithm for Final Case Identi�cation of Subcases

Further Breakdown of Subcases

Case �  � �

3a black black black black

3b red black black black

3c black black red black

3d ? red black black

3e ? ? black red

Exercise: Check that these cases are pairwise exclusive and that no other

cases are possible.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 16 / 30



Algorithm for Final Case Adjustments for Cases

Case 3a: Before Adjustment

Case 3a: �, , �, � all black. Goal: move x closer to root.

T1 T2

αx

β

TTTT3 4 5 6

δ

γ ζ

Adjustment:

Change colors of �, �, and �; x points to its parent

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 17 / 30

Algorithm for Final Case Adjustments for Cases

Case 3a: After Adjustment

T1 T2

β

TTTT3 4 5 6

x

α

γ

δ

ζ

After the adjustment:

All cases are now possible; x is closer to the root.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 18 / 30

Algorithm for Final Case Adjustments for Cases

Case 3b: Before Adjustment

Case 3b: � red; , �, � black. Goal: �nish after this case.

T1 T2

αx

β

TTTT3 4 5 6

γ

δ

ζ

Adjustment:

Change colors of �, �, and �; x points to parent.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 19 / 30

Algorithm for Final Case Adjustments for Cases

Case 3b: After Adjustment

T1 T2

β

TTTT3 4 5 6

x

α

γ

δ

ζ

After the adjustment:

None of the cases apply (loop terminates, x changed to black)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 20 / 30



Algorithm for Final Case Adjustments for Cases

Case 3c: Before Adjustment

Case 3c: � red; �, , � black. Goal: transform parent of x to red.

T1 T2

αx

β

TTTT3 4 5 6

γ

δ

ζ

Adjustment:

left rotation at �

change colors of � and �

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 21 / 30

Algorithm for Final Case Adjustments for Cases

Case 3c: After Adjustment

T1 T2

αx

TT3 4

TT5 6

β

γ

δ

ζ

After the adjustment:

x has not moved, but cases 3b, 3d, or 3e may now apply.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 22 / 30

Algorithm for Final Case Adjustments for Cases

Case 3d: Before Adjustment

Case 3d:  red; � and � black. Goal: transform to Case 3e.

T1 T2

αx

β

TTTT3 4 5 6

color c

γ

δ

ζ

Adjustment:

right rotation at �

change colors of  and �

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 23 / 30

Algorithm for Final Case Adjustments for Cases

Case 3d: After Adjustment

T1 T2

αx

T3

T4

β color c

TT5 6

γ

δ

ζ

After the adjustment:

x has not moved, but case 3e now applies.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 24 / 30



Algorithm for Final Case Adjustments for Cases

Case 3e: Before Adjustment

Case 3e: � is black; � is red. Goal: �nish after this case.

T1 T2

αx

β

TTTT3 4 5 6

color c

color c’γ

δ

ζ

Adjustment:

left rotation at �

recolor � and �

switch colors of � and �; x will point to the root of the tree.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 25 / 30

Algorithm for Final Case Adjustments for Cases

Case 3e: After Adjustment

T1 T2

x points to root

α

TT3 4

TT5 6

color c’

color c

β

γ

δ

ζ

After the adjustment:

Result is a red-black tree!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 26 / 30

Algorithm for Final Case Adjustments for Cases

Other Major Subcase: x is a Right Child

3f: Mirror Image of 3a

3g: Mirror Image of 3b

3h: Mirror Image of 3c

3i: Mirror Image of 3d

3j: Mirror Image of 3d

In each case, the \mirror image" is produced by exchanging the left and

right children of � and of �

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 27 / 30

Algorithm for Final Case Partial Correctness

Loop Invariant (Elimination of Double-Black Node)

Exactly one of the following cases applies:

T is a red-black tree,

x is a red-black node (no other problems),

x is a double-black node at the root (no other problems),

Exactly one of cases 3a{3j applies (no other problems).

Exercise: verify that this is in fact a loop invariant

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 28 / 30



Algorithm for Final Case Termination and E�ciency

Loop Variant (Elimination of Double Black Node)

Consider the function that is de�ned as follows.

Case Function Value

Red-Black Tree 0

x is red-black 0

x is at root 0

Case 3a or 3f depth(x) + 4

Case 3b or 3g 1

Case 3c or 3h 3

Case 3d or 3i 2

Case 3e or 3j 1

Exercise: Show that this is a loop variant

total cost linear in height of the tree

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 29 / 30

Reference

Reference

Please consult

Introduction to Algorithms, Chapter 13

for additional information about red-black trees.

Note: In the above reference, cases are named and grouped di�erently to

provide more compact pseudocode | but the result may be (even more)

confusing.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #18 30 / 30


	Deletions: Outline and Strategy
	Properties of a Red-Black Tree
	Beginning of a Deletion
	Deletion of a Black Node: Initialization
	Two Easy Cases

	Algorithm for Final Case
	Identification of Subcases
	Adjustments for Cases
	Partial Correctness
	Termination and Efficiency

	Reference

