
Computer Science 331
Hash Tables with Open Addressing

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #20

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 1 / 26

Outline

1 Open Addressing

2 Operations
Search
Insert
Delete

3 Collision Resolution
Linear Probing
Quadratic Probing
Double Hashing
Analysis

4 Summary

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 2 / 26

Open Addressing

Open Addressing

In a hash table with open addressing, all elements are stored in the hash
table itself.

For 0 � i < m, T [i ] is either

an element of the dictionary being stored,

NIL, or

DELETED (to be described shortly!)

Note: The textbook refers to DELETED as a \dummy value."

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 3 / 26

Open Addressing

Example

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

U = f1; 2; : : : ; 200g

m = 8

T : as shown above

h0 : Function such that

h0 : f1; 2; : : : ; 200g ! f0; 1; : : : ; 7g

Eg. h0(k) = k mod 8 for k 2 U:

h0 used here for �rst try to place key in table.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 4 / 26



Open Addressing

New De�nition of a Hash Function

We may need to make more than one attempt to �nd a place to insert an
element.

We'll use hash functions of the form

h : U � f0; 1; : : : ;m � 1g ! f0; 1; : : : ;m � 1g

h(k ; i): Location to choose to place key k on an i th attempt to
insert the key, if the locations examined on attempts
0; 1; : : : ; i � 1 were already full.

This location is not used if already occupied
(i.e., if not NIL or DELETED)

Function h0(k) from previous slide was: h(k ; 0)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 5 / 26

Open Addressing

Probe Sequence

The sequence of addresses

hh(k ; 0); h(k ; 1); : : : ; h(k ;m � 1)i

is called the probe sequence for key k

Initial Requirement:

hh(k ; 0); h(k ; 1); : : : ; h(k ;m � 1)i

is always a permutation of the integers between 0 and m � 1.

This is highly desirable condition: : : but it is not satis�ed by some of
the hash functions that are frequently used.

We will disucss what happens in the general case later in these notes.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 6 / 26

Operations Search

Search Pseudocode

The following algorithm either returns an integer i such that T[i] is
equal to k, or throws a notFoundException (because k is not stored in
the hash table).

int search (key k) f
i = 0;
do f

j = h(k, i);
if (T[j] == k) f

return j;
g;
i++;

g while ((T[j] != nil) && (i < m));
throw notFoundException;

g

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 7 / 26

Operations Search

Example: Search for 9

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

h : function such that

h : U � f0; 1; : : : ; 7g ! f0; 1; : : : ; 7g

and h(k ; i) = k + i mod 8 for k 2 U and 0 � i � 7:

Probes when Searching for 9 :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 8 / 26



Operations Insert

Insert Pseudocode: One Algorithm

The following algorithm either reports where the key k has been inserted
or throws an appropriate exception

int insert (key k) f
i = 0;
while (i < m) f

j = h(k, i);
if (T[j] == nil) f

T[j] = k; return j;
g else f

if (T[j] == k) f throw foundException; g;
g;
i++;

g;
throw tableFullException;

g

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 9 / 26

Operations Insert

Example: Insert 1

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

Probe sequence:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 10 / 26

Operations Delete

Delete Pseudocode

The next method either deletes k or returns an exception to indicate
that k was not in the table.

void delete (key k) f
i=0;
do f

j = h(k, i);
if (T[j] == k) f

T[j] = deleted; return;
g;
i++;

g while ((T[j] != nil) && (i < m));
throw notFoundException;

g

Question: Why not set T [j ] = NIL, above?

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 11 / 26

Operations Delete

Example: Delete 22

0 1 2 3 4 5 6 7
T: NIL 25 2 NIL 12 NIL 14 22

Probe sequence:

Insert 30?

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 12 / 26



Operations Delete

Complication

The \value" DELETED is never overwritten.

once T [j ] is marked DELETED it is not used to store an element of
the dictionary!

Eventually a hash table might report overows on insertions, even if
the the dictionary it stores is empty!

Unfortunately, cannot simply overwrite DELETED with NIL:

can cause searches to fail when they should succeed because insert
terminates when a NIL entry is reached

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 13 / 26

Operations Delete

Insert: Another Algorithm

Exercise:

Write another version of the \Insert" algorithm that allows
\DELETED" to be overwritten with an input key k

Don't Forget: Make sure k can never be stored in two or more
locations at the same time!

How to do this:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 14 / 26

Collision Resolution

More General Probe Sequences

As previously noted it is not always true, in practice, that the sequence of
addresses

hh(k ; 0); h(k ; 1); : : : ; h(k ;m � 1)i

is a permutation

Good News: In this more general situation, it is still true that

the search algorithm will return an integer i such that T[i] is
equal to k if the given key k is stored in the table

the exceptions FoundException and notFoundException (used
in the algorithms given previously) will still be thrown (precisely)
when they are needed

Bad News: tableFullException might now be thrown even though
there are still some nil entries in the table

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 15 / 26

Collision Resolution Linear Probing

Linear Probing

Let h(k) = h(k ; 0)

Simple Form of Linear Probing:

h(k ; i) = h(k) + i mod m for i � 1

Generalization:

h(k ; i) = h(k) + ci mod m for i � 1

for some nonzero constant c (not depending on k or i)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 16 / 26



Collision Resolution Linear Probing

Strengths and Weaknesses

Strengths:

If c = 1 (or gcd(c ;m) = 1) then the probe sequence is a permutation
of 0; 1; : : : ;m � 1

This hash function is easy to compute: For i � 1

h(k ; i) = h(k ; i � 1) + c mod m :

If linear probing is used, you can delete from a hash table without
using DELETED at all, but the algorithm is more complicated.

Weakness:

Primary Clustering:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 17 / 26

Collision Resolution Quadratic Probing

Quadratic Probing

Let h(k) = h(k ; 0)

Simple form of Quadratic Probing:

h(k ; i) = h(k) + i2 mod m

= h(k ; i � 1) + 2i � 1 mod m for i � 1

Generalization:

h(k ; i) = h(k) + c0i + c1i
2

for a constant c0 and a nonzero constant c1.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 18 / 26

Collision Resolution Quadratic Probing

Strengths and Weaknesses

Strengths:

If gcd(m; c) = 1 and m � 3 is prime then the probe sequence includes
(slightly) more than half of 0; 1; : : : ;m � 1

The hash function is easy to compute:

h(k ; i)� h(k ; i � 1) = �0 + �1i

for constants �0 and �1

Weakness:

Secondary Clustering:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 19 / 26

Collision Resolution Double Hashing

Double Hashing

Suppose h0 and h1 are both hash functions depending only on k , i.e.,

h0; h1 : U ! f0; 1; : : : ;m � 1g

and such that
h1(k) 6� 0 mod m

for every key k :

Double Hashing:

h(i ; k) = (h0(k) + i h1(k)) mod m

Eg. h0(k) = k mod m; h1(k) = 1 + (k mod m � 1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 20 / 26



Collision Resolution Double Hashing

Strengths and Weaknesses

Strengths:

If m is prime and gcd(h1(k);m) = 1 then the probe sequence for k is
a permutation of 0; 1; : : : ;m � 1

Analysis and experimental results both suggest extremely good
expected performance

Weakness:

A bit more complicated than linear (or quadratic) probing

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 21 / 26

Collision Resolution Analysis

Summary

Deletions complicate things:

Hash tables with chaining are often superior unless deletions are
extremely rare (or do not happen at all)

Expected number of probes for searches is too high for these tables to be
useful when � is close to one, where

� =
number of locations storing keys or DELETED

m

Remaining slides show results concerning tables produced by inserting
n keys k1; k2; : : : ; kn into an empty table (so � = n=m)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 22 / 26

Collision Resolution Analysis

The Best We Can Hope For

Uniform Hashing Assumption: Each of the m! permutations is equally
likely as a probe sequence for a key.

In some sense, the best we can hope for

Completely Unrealistic! Only m of these probe sequences are possible
using linear or quadratic probing; only (approximately) m2 are
possible with double hashing

Expected number of probes under this assumption: approximately

8<
:

1
1��

(unsuccessful search)

1
�
ln 1

1��
(successful search)

References: Textbook; Knuth, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 23 / 26

Collision Resolution Analysis

Analysis of Linear Probing (with c = 1)

Assumption: Each of the mn sequences

h0(k1); h0(k2); : : : ; h0(kn)

of initial probes are assumed to be equally likely.

Expected number of probes is approximately

8><
>:

1
2

�
1 +

�
1

1��

�2�
unsuccessful search

1
2

�
1 + 1

1��

�
successful search

Reference: Knuth, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 24 / 26



Collision Resolution Analysis

Reference for Additional Results

Knuth: \Exhaustive tests show that double hashing with two independent
hash functions h0 and h1 behaves essentially like uniform hashing, for all
practical purposes."

For additional details, and more results, see

Knuth, The Art of Computer Programming, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 25 / 26

Summary

Summary

Advantages of Open Addressing:

does not have the storage overhead due to pointers (required for the
linked lists in chaining)

better cache utilization during probing if the entries are small

good choice when entry sizes are small

Advantages of Chaining:

insensitive to clustering (only require good hash function)

grows dynamically and �lls up gracefully (chains all grow equally long
on average), unlike open addressing

good choice when entries are large and load factor can be high

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 26 / 26


	Open Addressing
	Operations
	Search
	Insert
	Delete

	Collision Resolution
	Linear Probing
	Quadratic Probing
	Double Hashing
	Analysis

	Summary

