Outline

@ Open Addressing
Computer Science 331

_ _ © Operations
Hash Tables with Open Addressing

@ Search
@ [nsert
@ Delete

Mike Jacobson
© Collision Resolution

Department of Computer Science

University of Calgary @ Linear Probing
@ Quadratic Probing
Lecture #20 @ Double Hashing
@ Analysis
O Summary
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 1/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 2/26

Open Addressing Open Addressing

Open Addressing Example

0 1
T. [NIL [25 |

3 4 5 6 7
[NIL [12 [NIL [14 [22 |

2
2

In a hash table with open addressing, all elements are stored in the hash
table itself.

U=1{1,2,...,200}
For 0 <i < m, T[i]is either m=28
@ an element of the dictionary being stored,
e NIL, or

e DELETED (to be described shortly!)

T : as shown above

hg : Function such that

ho : {1,2,...,200} — {0,1,...,7}
Note: The textbook refers to DELETED as a “dummy value.” Eg. ho(k) = k mod 8 for k € U.

hg used here for first try to place key in table.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 3/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 4 /26

Open Addressing

Open Addressing
New Definition of a Hash Function Probe Sequence

We may need to make more than one attempt to find a place to insert an The sequence of addresses
element.

(h(k7 0)7 h(k7 1)1 LI h(k7 m— 1)>
We'll use hash functions of the form

is called the probe sequence for key k
h:Ux{0,1,...,m—1} —-{0,1,...,m—1}

Initial Requirement:
h(k,i): Location to choose to place key k on an i*" attempt to

insert the key, if the locations examined on attempts

(h(ka 0)7 h(ka 1)a R h(k7 m— 1)>
0,1,...,/ — 1 were already full.
_ o _) is always a permutation of the integers between 0 and m — 1.
This location is not used if already occupied L i . o _
. @ This is highly desirable condition. .. but it is not satisfied by some of
(i.e., if not NIL or DELETED) .
the hash functions that are frequently used.
: . : @ We will disucss what happens in the general case later in these notes.
Function hg(k) from previous slide was: h(k,0) PP &
Mike Jacobson _(University of Calgary) Computer Science 331

Lecture #20 6 /26

Operations Search Operations Search

Search Pseudocode Example: Search for 9

The following algorithm either returns an integer i such that T[i] is

equal to k, or throws a notFoundException (because k is not stored in 0 1 2 3 4 5 6 7
the hash table). T [NIL[25]2 | NIL [12 [NIL [14]22]
in? segrch (key k) { h : function such that
i=0;
do { h:Ux{0,1,..., 7t = {0,1,...,7}
j = h(k, 1);
if (T[] == k) { and h(k,i)=k+imod8forke Uand 0<i<T.
return j;
}; Probes when Searching for 9 :
1++; °
} while ((T[j] != nil) && (i < m)); o
throw notFoundException;

} (]

Mike Jacobson (University of Calgary) Computer Science 331

Lecture #20 7/26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 8 /26

Operations Insert Operations Insert

Insert Pseudocode: One Algorithm Example: Insert 1

The following algorithm either reports where the key k has been inserted
or throws an appropriate exception

int insert (key k) {

0 1 2 3 4 5 6 7
i=0; T:’NIL\25\2\NIL\12\NIL\14\22‘
while (i < m) {

j = h(k, 1);
if (T[j] == nil) { Probe sequence:
T[j] = k; return j; °
} else { °
if (T[j] == k) { throw foundException; }; o
}s
it++;
¥
throw tableFullException;
¥
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 10 / 26

Operations Delete Operations Delete

Delete Pseudocode Example: Delete 22

The next method either deletes k or returns an exception to indicate

that k was not in the table. 0 1 3 4 5 6 7

T: [NIL [25 | g\ NIL [12 [NIL[14 [22]

void delete (key k) {

1i=0;
do { Probe sequence:
j =hk, i); e
if (T[] == k) { °
T[j] = deleted; return;
}? Insert 307
it++;
} while ((T[j] '= nil) && (i < m)); °
throw notFoundException; e

} °

Question: Why not set T[j] = NIL, above?

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 11 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 12 / 26

Operations Delete Operations Delete

Complication Insert: Another Algorithm

The “value” DELETED is never overwritten. Exercise:
@ once T[j] is marked DELETED it is not used to store an element of @ Write another version of the “Insert” algorithm that allows
the dictionary! “DELETED” to be overwritten with an input key k
@ Eventually a hash table might report overflows on insertions, even if @ Don't Forget: Make sure k can never be stored in two or more
the the dictionary it stores is empty! locations at the same time!
Unfortunately, cannot simply overwrite DELETED with NIL: How to do this:
@ can cause searches to fail when they should succeed because insert °
terminates when a NIL entry is reached °
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 13 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 14 / 26

Collision Resolution Collision Resolution Linear Probing

More General Probe Sequences Linear Probing

As previously noted it is not always true, in practice, that the sequence of

addresses Let h(k) = h(k,0)
h(k,0), h(k,1),..., h(k,m—1
(h(k;), bk, 1), Ak, m = 1)) Simple Form of Linear Probing:

is a permutation _ _]
h(k,i) = h(k) + i mod m fori>1
Good News: In this more general situation, it is still true that
e the search algorithm will return an integer i such that T[i] is
equal to k if the given key k is stored in the table Generalization:

o the exceptions FoundException and notFoundException (used h(k, i) = h(k) + ¢i mod m for i>1
in the algorithms given previously) will still be thrown (precisely) ’ -

when they are needed for some nonzero constant ¢ (not depending on k or i)
Bad News: tableFullException might now be thrown even though

there are still some nil entries in the table

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 15 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 16 / 26

Collision Resolution Linear Probing Collision Resolution Quadratic Probing

Strengths and Weaknesses Quadratic Probing

St ths:
rengths _ _ Let h(k) = h(k,0)
o If c =1 (or gcd(c, m) = 1) then the probe sequence is a permutation

of 0,1,....,m—1

@ This hash function is easy to compute: For i > 1

Simple form of Quadratic Probing:

h(k,i) = h(k) + i> mod m
h(k,i) = h(k,i—1)+cmod m . = h(k,i—1)+2i—1modm fori>1
@ If linear probing is used, you can delete from a hash table without
using DELETED at all, but the algorithm is more complicated. Generalization:

h(k, i) = h(k) + coi + c1i?

for a constant ¢y and a nonzero constant c¢;.

Weakness:

@ Primary Clustering:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 17 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 18 / 26

Collision Resolution Quadratic Probing Collision Resolution Double Hashing

Strengths and Weaknesses Double Hashing

Strengths: Suppose hp and hy are both hash functions depending only on k, i.e.,

o If gcd(m,c) =1 and m > 3 is prime then the probe sequence includes ho by - U= {0,1,...,m—1}
(slightly) more than half of 0,1,...,m—1

@ The hash function is easy to compute: and such that
hi(k) #0 mod m
h(k, i) = hlk,i=1) = a0 + eni for every key k.

for constants ag and oy Double Hashi
ouble Hashing:

Weakness: h(i, k) = (ho(k) + i h1(k)) mod m

e Secondary Clustering:
Eg. ho(k) = kmod m, hi(k) =1+ (k mod m—1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 19 / 26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 20 / 26

Collision Resolution Double Hashing Collision Resolution ~ Analysis

Strengths and Weaknesses Summary

Deletions complicate things:

Strengths: @ Hash tables with chaining are often superior unless deletions are

o If mis prime and gecd(h1(k), m) = 1 then the probe sequence for k is extremely rare (or do not happen at all)

a permutation of 0,1,...,.m—1
Expected number of probes for searches is too high for these tables to be

@ Analysis and experimental results both suggest extremely good :
useful when X is close to one, where

expected performance
\ = number of locations storing keys or DELETED
Weakness: N m

@ A bit more complicated than linear (or quadratic) probing
Remaining slides show results concerning tables produced by inserting
n keys ki, ka, ..., k, into an empty table (so A = n/m)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 21 /26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 22 /26

Collision Resolution ~ Analysis Collision Resolution ~ Analysis

The Best We Can Hope For Analysis of Linear Probing (with ¢ = 1)

Uniform Hashing Assumption: Each of the m! permutations is equally

H . n
likely as a probe sequence for a key. Assumption: Each of the m” sequences

@ In some sense, the best we can hope for ho(ky), ho(ka), - .., ho(kn)

o Completely Unrealistic! Only m of these probe sequences are possible
using linear or quadratic probing; only (approximately) m? are
possible with double hashing

of initial probes are assumed to be equally likely.
Expected number of probes is approximately

2
(1 + (ﬁ)) unsuccessful search

(1 + ﬁ successful search

Expected number of probes under this assumption: approximately

N=

Y (unsuccessful search)

N

1
In = (successful search)

>|=

Reference: Knuth, Volume 3
References: Textbook; Knuth, Volume 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 23 /26 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 24 [/ 26

Collision Resolution ~ Analysis Summary

Reference for Additional Results Summary

Advantages of Open Addressing:
@ does not have the storage overhead due to pointers (required for the

Knuth: “Exhaustive tests show that double hashing with two independent linked lists in chaining)
hash functions hy and h; behaves essentially like uniform hashing, for all o better cache utilization during probing if the entries are small
practical purposes.” . .

@ good choice when entry sizes are small

For additional details, and more results, see .
Advantages of Chaining:

Knuth, The Art of Computer Programming, Volume 3 e insensitive to clustering (only require good hash function)

@ grows dynamically and fills up gracefully (chains all grow equally long
on average), unlike open addressing

@ good choice when entries are large and load factor can be high

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 26 / 26

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #20 25 /26

	Open Addressing
	Operations
	Search
	Insert
	Delete

	Collision Resolution
	Linear Probing
	Quadratic Probing
	Double Hashing
	Analysis

	Summary

