Outline

Computer Science 331

Algorithms for Searching @ Searching in an Unsorted Array

@ The Searching Problem
@ Linear Search

Mike Jacobson

Department of Computer Science 9 Searching in a Sorted Array
University of Calgary @ The Searching Problem

@ Linear Search

Lecture #21 @ Binary Search

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 1/25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 2 /25

Searching in an Unsorted Array =~ The Searching Problem Searching in an Unsorted Array = The Searching Problem

The “Searching” Problem The “Searching” Problem, continued

Precondition 1: Precondition 2:

a) Ais an array with length A.length = n > 1 storing values of some a) Ais an array with length A.length = n > 1 storing values of some
type T type T

b) key is a value of type T that is stored in A b) key is a value of type T that is not stored in A

Postcondition 1: Postcondition 2:

a) The value returned is an integer i such that A[i] = key a) A notFoundException is thrown

b) A and key are not changed b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 3/25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 4 /25

Searching in an Unsorted Array Linear Search Searching in an Unsorted Array Linear Search

Linear Search Example

Idea: Compare A[0], A[1], A[2],... to key until either
@ key is found, or

@ we run out of entries to check

int LinearSearch(T key)
i=0 Search for 18 in the array A:
while (i < n) and (A[/] # key) do °
i=i+1
end while
if / < n then
return |
else

throw KeyNotFoundException
end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 5 /25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 6 /25

Searching in an Unsorted Array Linear Search Searching in an Unsorted Array Linear Search

Partial Correctness Partial Correctness (inductive step)
Loop Invariant: The following properties are satisfied at the beginning of Inductive hypothesis: assume that the loop body is executed at least / > 0
each execution of the loop body: times and that the loop invariant is satisfied at the beginning of the ith

@ /is an integer such that 0 </ < n execution.

o A[h] # key for 0 < h < i By inspecting the code, we see that at the end of the ith execution:

@ A and key have not been changed °

°

Proving the Loop Invariant: use induction on number of executions of
the loop body (/)

If there is a i + 1lst execution of the loop body, then the loop test must

Base Case: pass after the end of the ith execution, implying:
o o
o o
o o

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 7/25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 8 /25

Searching in an Unsorted Array Linear Search Searching in an Unsorted Array Linear Search

Partial Correctness (applying the loop invariant) Termination and Efficiency

At the end of the loop (loop condition fails), the following properties are Loop Variant: f(n,i) =n—i

satisfied:
@ j is an integer such that 0 </ < n Proving the Loop Variant:
o Alh] # key for 0 < h < i

@ A and key have not been changed

e Either i = nor (i < n and A[i] = key)

e f(n,i) is a decreasing integer function because integer i increases by
one after each loop body execution

e f(n,i) =0 when i = n, loop terminates (worst case) when i/ > n

Application of Loop Variant:
Conclusion: algorithm postconditions are satisfied because

o
()
o
o
o
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 9 /25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 10 / 25

Searching in a Sorted Array = The Searching Problem Searching in a Sorted Array = The Searching Problem

The “Searching” Problem in a Sorted Array The “Searching” Problem in a Sorted Array

Precondition 1: Precondition 2:

a) Ais an array with length A.length = n > 1 storing values of some a) Ais an array with length A.length = n > 1 storing values of some
ordered type T ordered type T

b) A[i] < A[i + 1] for every integer i such that 0 </ <n—1 b) A[i] < A[i + 1] for every integer i such that 0 </ <n—1

c) key is a value of type T that is stored in A c) key is a value of type T that is not stored in A

Postcondition 1: Postcondition 2:

a) The value returned is an integer i such that A[/] = key a) A notFoundException is thrown

b) A and key are not changed b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 11 /25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 12 / 25

Searching in a Sorted Array Linear Search Searching in a Sorted Array Linear Search

Linear Search Example

|dea: compare A[0], A[1], A[2],... to k until either k is found or

@ we see a value larger than k — all future values will be larger than k
as welll — or 0

@ we run out of entries to check A: ’ -3 ‘

int LinearSearch(T key)

i=0

while (i < n) and do e
i=i+1 °

end while °

if (/ < n) and (A[/] = k) then °
return |

else

throw KeyNotFoundException
end if

Search for 17 in the array A :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 13 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 14 / 25

Searching in a Sorted Array Linear Search Searching in a Sorted Array Linear Search

Partial Correctness Partial Correctness (inductive step)
Loop Invariant: The following properties are satisfied at the beginning of Inductive hypothesis: assume that the loop body is executed at least / > 0
each execution of the loop body: times and that the loop invariant is satisfied at the beginning of the ith

@ /is an integer such that 0 </ < n execution.

o A[h] < key for 0 < h < i By inspecting the code, we see that at the end of the ith execution:

@ A and key have not been changed °

°

Proving the Loop Invariant: use induction on number of executions of
the loop body (/)

If there is a i + 1lst execution of the loop body, then the loop test must

Base Case: pass after the end of the ith execution, implying:
o o
o o
o o

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 15 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 16 / 25

Searching in a Sorted Array Linear Search Searching in a Sorted Array Linear Search

Partial Correctness (applying the loop invariant) Termination and Efficiency

At the end of the loop (loop condition fails), the following properties are

satisfied: Loop Variant: f(n,i)=n—1i

@ /is an integer such that 0 </ < n
o Alh]l < key for 0 < h < i

@ A and key have not been changed
e Either i =nor i < nand A[i] > key Application of Loop Variant:

@ same as before (worst-case runtime is also ©(n))

Proving the Loop Variant:

@ same as before

Conclusion: algorithm postconditions are satisfied because

e Case 1 (i = n): Note: although the worst-case involves examining all elements of the
array, fewer will be examined on average

o Case 2 (i < nand A[i] = key): @ improves on unsorted case (all array elements must be examined to
e Case 3 (i < nand A[i] > key): determine that k is not in the array)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 17 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 18 / 25

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Binary Search Specification of Requirements for Subroutine

) Calling Sequence: int bsearch(int low, int high, int key)
Idea: suppose we compare key to A[i]

o if key > A[i] then key > A[h] for all h < i. Preconditions 1 and 2: add the following to the corresponding
o if key < A[i] then key < A[h] for all h > i. precondition in the “Searching in a Sorted Array” problem:
d) low and high are integers such that

0<iow <n
—1<high<n-1

low < high+ 1

Alh] < key for 0 < h < low
Alh] > key for high< h<n-1

Thus, comparing key to the middle of the array tells us a lot:

@ can eliminate half of the array after the comparison

int binarySearch(T key)
return bsearch(0, n — 1, key)
The corresponding postcondition can be used without change.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 19 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 20 / 25

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Pseudocode: The Binary Search Subroutine Example

int bsearch(int /ow, int high, T ket)
if low > high then

else A -3]
mid = |(low + high)/2|
if (A[mid] > key) then

Search for 18 in the array A:

return °

else if (A[mid] < key) then
return °

else °
return

end if

end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 21 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 22 / 25

Searching in a Sorted Array Binary Search Searching in a Sorted Array Binary Search

Partial Correctness Efficiency

Assumptions Case: Jow > high

@ bsearch is called with the precondition satisfied

°
o Calls to bsearch within the code behave as expected
Case: low > high Case: low < high : Consider i = [log,(high — low + 1)]
. @ Result of Function Call:
)
Case: low = high o What Happens if i =0:
o)
o o Initial Value:
)

Case: low < high e Conclusion:
o)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 23 /25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 24 [25

Searching in a Sorted Array Binary Search

References

Java.utils.Arrays package contains several implementations of binary
search

@ arrays with Object or generic entries, or entries of any basic type

o slightly different pre and postconditions than presented here

Textbook: Section 9.3.1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 25 /25

	Searching in an Unsorted Array
	The Searching Problem
	Linear Search

	Searching in a Sorted Array
	The Searching Problem
	Linear Search
	Binary Search

