

- a) A is an array with length A.length $= n \ge 1$ storing values of some type T
- b) key is a value of type T that is stored in A

Postcondition 1:

- a) The value returned is an integer *i* such that A[i] = key
- b) A and key are not changed

- a) A is an array with length A.length $= n \ge 1$ storing values of some type T
- b) key is a value of type T that is not stored in A

Postcondition 2:

- a) A notFoundException is thrown
- b) A and key are not changed

Searching in an Unsorted Array Linear Search

Linear Search

Idea: Compare $A[0], A[1], A[2], \ldots$ to key until either

- key is found, or
- we run out of entries to check

int LinearSearch(T key)

```
i = 0
while (i < n) and (A[i] \neq key) do
  i = i + 1
end while
if i < n then
  return i
else
  throw KeyNotFoundException
end if
```

Example

۲

0 2 3 4 5 6 7 8 9 10 1 -3 43 30 6 18 49 2 21 29 35 23 A: |

Searching in an Unsorted Array Linear Search

Search for 18 in the array A:

Lecture #21

5 / 25

Searching in an Unsorted Array Linear Search

Partial Correctness

Mike Jacobson (University of Calgary)

Loop Invariant: The following properties are satisfied at the beginning of each execution of the loop body:

Computer Science 331

- *i* is an integer such that 0 < i < n
- $A[h] \neq key$ for $0 \leq h \leq i$
- A and key have not been changed

Proving the Loop Invariant: use induction on number of executions of the loop body (i)

Base Case:

- ۲

- Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #21

Searching in an Unsorted Array Linear Search

Partial Correctness (inductive step)

Inductive hypothesis: assume that the loop body is executed at least i > 0times and that the loop invariant is satisfied at the beginning of the *i*th execution.

Computer Science 331

By inspecting the code, we see that at the *end* of the *i*th execution:

۲ ۲

۲

۲

۲

Mike Jacobson (University of Calgary)

If there is a i + 1st execution of the loop body, then the loop test must pass after the end of the *i*th execution, implying:

- ٥

Partial Correctness (applying the loop invariant)

At the *end* of the loop (loop condition fails), the following properties are satisfied:

- *i* is an integer such that $0 \le i \le n$
- $A[h] \neq key$ for $0 \leq h < i$
- A and key have not been changed
- Either i = n or (i < n and A[i] = key)

Conclusion: algorithm postconditions are satisfied because

Termination and Efficiency

Loop Variant: f(n, i) = n - i

Proving the Loop Variant:

- f(n, i) is a decreasing integer function because integer *i* increases by one after each loop body execution
- f(n,i) = 0 when i = n, loop terminates (worst case) when $i \ge n$

Application of Loop Variant:

- •
- 9

Precondition 1:

۲

۲

- a) A is an array with length A.length = $n \ge 1$ storing values of some ordered type T
- b) A[i] < A[i+1] for every integer i such that $0 \le i < n-1$
- c) key is a value of type T that is stored in A

Postcondition 1:

- a) The value returned is an integer i such that A[i] = key
- b) A and key are not changed

Precondition 2:

- a) A is an array with length A.length = $n \ge 1$ storing values of some ordered type T
- b) A[i] < A[i + 1] for every integer i such that $0 \le i < n 1$
- c) key is a value of type T that is not stored in A

Postcondition 2:

- a) A notFoundException is thrown
- b) A and key are not changed

Searching in a Sorted Array Linear Search

Linear Search

Idea: compare $A[0], A[1], A[2], \ldots$ to k until either k is found or

- we see a value larger than k all future values will be larger than k as well! or
- we run out of entries to check

int LinearSearch(T key)

```
i = 0
while (i < n) and do
    i = i + 1
end while
if (i < n) and (A[i] = k) then
    return i
else
    throw KeyNotFoundException
end if</pre>
```

Example

Searching in a Sorted Array Linear Search

Search for 17 in the array A:

۲

- •
- -
- ٩

Searching in a Sorted Array Linear Search

Partial Correctness

Mike Jacobson (University of Calgary)

Loop Invariant: The following properties are satisfied at the beginning of each execution of the loop body:

Computer Science 331

- *i* is an integer such that $0 \le i < n$
- A[h] < key for $0 \le h \le i$
- A and key have not been changed

Proving the Loop Invariant: use induction on number of executions of the loop body (*i*)

Base Case:

- •
- ٥

Lecture #21

13 / 25

Searching in a Sorted Array Linear Search

Partial Correctness (inductive step)

Inductive hypothesis: assume that the loop body is executed at least $i \ge 0$ times and that the loop invariant is satisfied at the beginning of the *i*th execution.

By inspecting the code, we see that at the *end* of the *i*th execution:

•

۲

۲

۲

Mike Jacobson (University of Calgary)

If there is a i + 1st execution of the loop body, then the loop test must pass after the end of the *i*th execution, implying:

- •

Computer Science 331

Lecture #21 14 / 2

Searching in a Sorted Array Linear Search

Partial Correctness (applying the loop invariant)

At the *end* of the loop (loop condition fails), the following properties are satisfied:

- *i* is an integer such that $0 \le i \le n$
- A[h] < key for $0 \le h < i$
- A and key have not been changed
- Either i = n or i < n and $A[i] \ge key$

Conclusion: algorithm postconditions are satisfied because

- Case 1 (i = n):
- Case 2 (*i* < *n* and *A*[*i*] = *key*):
- Case 3 (*i* < *n* and *A*[*i*] > *key*):

Termination and Efficiency

Loop Variant: f(n, i) = n - i

Proving the Loop Variant:

same as before

Application of Loop Variant:

• same as before (worst-case runtime is also $\Theta(n)$)

Note: although the worst-case involves examining all elements of the array, fewer will be examined on average

• improves on unsorted case (all array elements *must* be examined to determine that *k* is not in the array)

Mike Jacobson (University of Calgary)

Searching in a Sorted Array Binary Search

Pseudocode: The Binary Search Subroutine

int bsearch(int low, int high, T ket)

if low > high then

else

mid = [(low + high)/2]
if (A[mid] > key) then
 return
else if (A[mid] < key) then
 return
else
 return
end if
end if</pre>

Example

	0	1	2	3	4	5	6	7	8	9	10
A:	-3	2	6	18	21	23	29	30	35	43	49

Searching in a Sorted Array Binary Search

Search for 18 in the array A:

•

Case: *low* < *high* : Consider $i = \lceil \log_2(high - low + 1) \rceil$

- •
- •

Computer Science 331	Lecture #21 21 / 25		Mike Jacobson (University of Calgary)	Computer Science 331	
ing in a Sorted Array Binary Search			Searchin	g in a Sorted Array Binary Search	

Efficiency

۲

Case: *low* \geq *high*

٠

٥

0

• Initial Value:

• Conclusion:

• Result of Function Call:

• What Happens if i = 0:

Partial Correctness

Mike Jacobson (University of Calgary)

Assumptions

• bsearch is called with the precondition satisfied

Search

• Calls to bsearch within the code behave as expected

Case: *low* > *high*

۲

Case: low = high

- •
- •

Case: *low* < *high*

- •
- •

Lecture #21

22 / 25

Searching in a Sorted Array Binary Search

References

Java.utils.Arrays package contains several implementations of binary search

- arrays with Object or generic entries, or entries of any basic type
- slightly different pre and postconditions than presented here

Textbook: Section 9.3.1

Computer Science 331

Lecture #21 25 / 25