
Computer Science 331
Algorithms for Searching

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #21

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 1 / 25

Outline

1 Searching in an Unsorted Array
The Searching Problem
Linear Search

2 Searching in a Sorted Array
The Searching Problem
Linear Search
Binary Search

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 2 / 25

Searching in an Unsorted Array The Searching Problem

The \Searching" Problem

Precondition 1:

a) A is an array with length A:length = n � 1 storing values of some
type T

b) key is a value of type T that is stored in A

Postcondition 1:

a) The value returned is an integer i such that A[i ] = key

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 3 / 25

Searching in an Unsorted Array The Searching Problem

The \Searching" Problem, continued

Precondition 2:

a) A is an array with length A:length = n � 1 storing values of some
type T

b) key is a value of type T that is not stored in A

Postcondition 2:

a) A notFoundException is thrown

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 4 / 25



Searching in an Unsorted Array Linear Search

Linear Search

Idea: Compare A[0];A[1];A[2]; : : : to key until either

key is found, or

we run out of entries to check

int LinearSearch(T key)

i = 0
while (i < n) and (A[i ] 6= key) do
i = i + 1

end while

if i < n then

return i

else

throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 5 / 25

Searching in an Unsorted Array Linear Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: 43 30 6 18 -3 49 2 21 29 35 23

Search for 18 in the array A :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 6 / 25

Searching in an Unsorted Array Linear Search

Partial Correctness

Loop Invariant: The following properties are satis�ed at the beginning of
each execution of the loop body:

i is an integer such that 0 � i < n

A[h] 6= key for 0 � h � i

A and key have not been changed

Proving the Loop Invariant: use induction on number of executions of
the loop body (i)

Base Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 7 / 25

Searching in an Unsorted Array Linear Search

Partial Correctness (inductive step)

Inductive hypothesis: assume that the loop body is executed at least i � 0
times and that the loop invariant is satis�ed at the beginning of the ith
execution.

By inspecting the code, we see that at the end of the ith execution:

If there is a i + 1st execution of the loop body, then the loop test must
pass after the end of the ith execution, implying:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 8 / 25



Searching in an Unsorted Array Linear Search

Partial Correctness (applying the loop invariant)

At the end of the loop (loop condition fails), the following properties are
satis�ed:

i is an integer such that 0 � i � n

A[h] 6= key for 0 � h < i

A and key have not been changed

Either i = n or (i < n and A[i ] = key)

Conclusion: algorithm postconditions are satis�ed because

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 9 / 25

Searching in an Unsorted Array Linear Search

Termination and E�ciency

Loop Variant: f (n; i) = n � i

Proving the Loop Variant:

f (n; i) is a decreasing integer function because integer i increases by
one after each loop body execution

f (n; i) = 0 when i = n; loop terminates (worst case) when i � n

Application of Loop Variant:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 10 / 25

Searching in a Sorted Array The Searching Problem

The \Searching" Problem in a Sorted Array

Precondition 1:

a) A is an array with length A:length = n � 1 storing values of some
ordered type T

b) A[i ] < A[i + 1] for every integer i such that 0 � i < n � 1

c) key is a value of type T that is stored in A

Postcondition 1:

a) The value returned is an integer i such that A[i ] = key

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 11 / 25

Searching in a Sorted Array The Searching Problem

The \Searching" Problem in a Sorted Array

Precondition 2:

a) A is an array with length A:length = n � 1 storing values of some
ordered type T

b) A[i ] < A[i + 1] for every integer i such that 0 � i < n � 1

c) key is a value of type T that is not stored in A

Postcondition 2:

a) A notFoundException is thrown

b) A and key are not changed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 12 / 25



Searching in a Sorted Array Linear Search

Linear Search

Idea: compare A[0];A[1];A[2]; : : : to k until either k is found or

we see a value larger than k | all future values will be larger than k

as well! | or

we run out of entries to check

int LinearSearch(T key)

i = 0
while (i < n) and do

i = i + 1
end while

if (i < n) and (A[i ] = k) then
return i

else

throw KeyNotFoundException

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 13 / 25

Searching in a Sorted Array Linear Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: -3 2 6 18 21 23 29 30 35 43 49

Search for 17 in the array A :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 14 / 25

Searching in a Sorted Array Linear Search

Partial Correctness

Loop Invariant: The following properties are satis�ed at the beginning of
each execution of the loop body:

i is an integer such that 0 � i < n

A[h] < key for 0 � h � i

A and key have not been changed

Proving the Loop Invariant: use induction on number of executions of
the loop body (i)

Base Case:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 15 / 25

Searching in a Sorted Array Linear Search

Partial Correctness (inductive step)

Inductive hypothesis: assume that the loop body is executed at least i � 0
times and that the loop invariant is satis�ed at the beginning of the ith
execution.

By inspecting the code, we see that at the end of the ith execution:

If there is a i + 1st execution of the loop body, then the loop test must
pass after the end of the ith execution, implying:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 16 / 25



Searching in a Sorted Array Linear Search

Partial Correctness (applying the loop invariant)

At the end of the loop (loop condition fails), the following properties are
satis�ed:

i is an integer such that 0 � i � n

A[h] < key for 0 � h < i

A and key have not been changed

Either i = n or i < n and A[i ] � key

Conclusion: algorithm postconditions are satis�ed because

Case 1 (i = n):

Case 2 (i < n and A[i ] = key):

Case 3 (i < n and A[i ] > key):

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 17 / 25

Searching in a Sorted Array Linear Search

Termination and E�ciency

Loop Variant: f (n; i) = n � i

Proving the Loop Variant:

same as before

Application of Loop Variant:

same as before (worst-case runtime is also �(n))

Note: although the worst-case involves examining all elements of the
array, fewer will be examined on average

improves on unsorted case (all array elements must be examined to
determine that k is not in the array)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 18 / 25

Searching in a Sorted Array Binary Search

Binary Search

Idea: suppose we compare key to A[i ]

if key > A[i ] then key > A[h] for all h � i :

if key < A[i ] then key < A[h] for all h � i :

Thus, comparing key to the middle of the array tells us a lot:

can eliminate half of the array after the comparison

int binarySearch(T key)

return bsearch(0, n � 1, key)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 19 / 25

Searching in a Sorted Array Binary Search

Speci�cation of Requirements for Subroutine

Calling Sequence: int bsearch(int low ; int high; int key)

Preconditions 1 and 2: add the following to the corresponding
precondition in the \Searching in a Sorted Array" problem:

d) low and high are integers such that

0 � low � n

�1 � high � n � 1
low � high + 1
A[h] < key for 0 � h < low

A[h] > key for high < h � n � 1

The corresponding postcondition can be used without change.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 20 / 25



Searching in a Sorted Array Binary Search

Pseudocode: The Binary Search Subroutine

int bsearch(int low ; int high; T ket)

if low > high then

else

mid = b(low + high)=2c
if (A[mid ] > key) then
return

else if (A[mid ] < key) then
return

else

return

end if

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 21 / 25

Searching in a Sorted Array Binary Search

Example

0 1 2 3 4 5 6 7 8 9 10
A: -3 2 6 18 21 23 29 30 35 43 49

Search for 18 in the array A :

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 22 / 25

Searching in a Sorted Array Binary Search

Partial Correctness

Assumptions

bsearch is called with the precondition satis�ed

Calls to bsearch within the code behave as expected

Case: low > high

Case: low = high

Case: low < high

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 23 / 25

Searching in a Sorted Array Binary Search

E�ciency

Case: low � high

Case: low < high : Consider i = dlog2(high � low + 1)e

Result of Function Call:

What Happens if i = 0 :

Initial Value:

Conclusion:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 24 / 25



Searching in a Sorted Array Binary Search

References

Java.utils.Arrays package contains several implementations of binary
search

arrays with Object or generic entries, or entries of any basic type

slightly di�erent pre and postconditions than presented here

Textbook: Section 9.3.1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #21 25 / 25


	Searching in an Unsorted Array
	The Searching Problem
	Linear Search

	Searching in a Sorted Array
	The Searching Problem
	Linear Search
	Binary Search


