
Computer Science 331
Classical Sorting Algorithms

Mike Jacobson

Department of Computer Science
University of Calgary

Lecture #22

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 1 / 33

Outline

1 Introduction

2 Selection Sort
Description
Analysis

3 Insertion Sort
Description
Analysis

4 Bubble Sort
Description
Analysis

5 Comparisons

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 2 / 33

Introduction

The \Sorting Problem"

Precondition:

A: Array of length n, for some integer n � 1,
storing objects of some ordered type

Postcondition:

A: Elements have been permuted (reordered)
but not replaced, in such a way that

A[i ] � A[i + 1] for 0 � i < n � 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 3 / 33

Introduction

Three Classical Algorithms

Discussed today: three \classical" sorting algorithms

Reasonably simple

Work well on small arrays

Each can be used to sort an array of size n using �(n2) operations
(comparisons and exchanges of elements) in the worst case

None is a very good choice to sort large arrays: asymptotically faster
algorithms exist!

Reference: Textbook, Sections 3.1.2 and 8.2.2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 4 / 33



Selection Sort Description

Selection Sort

Idea:

Repeatedly �nd \i th-smallest" element and exchange it with the
element in location A[i ]

Result: After i th exchange,

A[0];A[1]; : : : ;A[i � 1]

are the i smallest elements in the entire array, in sorted order | and
array elements have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 5 / 33

Selection Sort Description

Pseudocode

void Selection Sort(int[] A)

for i from 0 to n � 2 do

min = i

for j from i + 1 to n � 1 do

if A[j ] < A[min] then
min = j

end if

end for

fSwap A[i ] and A[min]g
tmp = A[i ]
A[i ] = A[min]
A[min] = tmp

end for

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 6 / 33

Selection Sort Description

Example

A: 2 6 3 1 4

Idea: �nd smallest element in A[i ]; : : : ;A[4] for each i from 0 to n � 1

i = 0

A:

i = 1

A:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 7 / 33

Selection Sort Description

Example (cont.)

i = 2

A:

i = 3

A:

Finished! A[0]; : : : ;A[4] sorted

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 8 / 33



Selection Sort Analysis

Inner Loop: Semantics

The inner loop is a for loop, which does the same thing as the following
code (which includes a while loop):

j = i + 1
while j < n do

if (A[j ] < A[min]) then
min = j

end if

j = j + 1
end while

We will supply a \loop invariant" and \loop variant" for the above while
loop in order to analyze the behaviour of the for loop we used to generate
it

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 9 / 33

Selection Sort Analysis

Inner Loop: Loop Invariant

Loop Invariant: At the beginning of each execution of the inner loop
body

i ;min 2 N

First subarray (with size i) is sorted with smallest elements:

0 � i � n � 2
A[h] � A[h + 1] for 0 � h � i � 2
if i > 0 then A[i � 1] � A[h] for i � h � n � 1

Searching for the next-smallest element:

i + 1 � j < n

i � min < j

A[min] � A[h] for i � h < j

Entries of A have been reordered; otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 10 / 33

Selection Sort Analysis

Inner Loop: Interpretation of the Loop Invariant

all > A[i � 1]z }| {
A: i � 1 i j � 1 j

| {z }
sorted

| {z }
A[min] smallest

Interpretation:

A[0] � A[1] � � � � � A[i � 1]

If i > 0 then A[i � 1] � A[`] for every integer ` such that i � ` � n

i � min � j � 1 and A[min] � A[h] for every integer h such that
i � h � j � 1

entries of A have been reordered, otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 11 / 33

Selection Sort Analysis

Application of the Loop Invariant

Loop invariant, �nal execution of the loop body, and failure of the loop

test ensures that:

j = n immediately after the �nal execution of the inner loop body

i � min < n and A[min] � A[`] for all ` such that i � ` < n

A[min] � A[h] for all h such that 0 � h < i

In other words, A[min] is the value that should be moved into position A[i ]

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 12 / 33



Selection Sort Analysis

Inner Loop: Loop Variant and Application

Loop Variant: f (n; i ; j) = n � j

decreasing integer function

when f (n; i ; j) = 0 we have j = n and the loop terminates

Application:

initial value is j = i + 1

worst-case number of iterations is
f (n; i ; i + 1) = n � (i + 1) = n � 1� i

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 13 / 33

Selection Sort Analysis

Outer Loop: Semantics

The outer loop is a for loop whose index variable i has values from 0
to n � 2, inclusive

This does the same thing as a sequence of statements including

an initialization statement, i = 0

a while loop with test \i � n � 2" whose body consists of the body
of the for loop, together with a �nal statement i = i + 1

We will provide a loop invariant and a loop variant for this while loop in
order to analyze the given for loop

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 14 / 33

Selection Sort Analysis

Outer Loop: Loop Invariant and Loop Variant

Loop Invariant: At the beginning of each execution of the outer loop
body

i is an integer such that 0 � i < n � 1

A[h] � A[h + 1] for 0 � h < i

if i > 0; A[i � 1] � A[`] for i � ` < n

Entries of A have been reordered; otherwise unchanged

Thus: A[0]; : : : ;A[i � 1] are sorted and are the i smallest elements in A

Loop Variant: f (n; i) = n � 1� i

decreasing integer function

when f (n; i) = 0 we have i = n � 1 and the loop terminates

worst-case number of iterations is f (n; 0) = n � 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 15 / 33

Selection Sort Analysis

Analysis of Selection Sort

Worst-case: �(n2) steps

inner loop iterates n � 1� i times (constant steps per iteration)

outer loop iterates n � 1 times

total number of steps is at most

c0 +
n�2X
i=0

c1(n � 1� i) = c0 + c1
n(n � 1)

2

Conclusion: Worst-case running time is in O(n2).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 16 / 33



Selection Sort Analysis

Analysis of Selection Sort, Concluded

Best-Case: Also in 
(n2) :

Both loops are for loops and a positive number of steps is used on
each execution of the inner loop body

Total number of steps is therefore at least

bc0 +
n�2X
i=0

bc1(n � 1� i) 2 
(n2)

Conclusion: Every application of this algorithm to sort an array of
length n uses �(n2) steps

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 17 / 33

Insertion Sort Description

Insertion Sort

Idea:

Sort progressively larger subarrays

n � 1 stages, for i = 1; 2; : : : ; n � 1

At the end of the i th stage

Entries originally in locations

A[0];A[1]; : : : ;A[i ]

have been reordered and are now sorted
Entries in locations

A[i + 1];A[i + 2]; : : : ;A[n � 1]

have not yet been examined or moved

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 18 / 33

Insertion Sort Description

Pseudocode

void Insertion Sort(int [] A)

for i from 1 to n � 1 do

j = i

while ((j > 0) and (A[j ] < A[j � 1])) do
fSwap A[j � 1] and A[j ]g
tmp = A[j ]
A[j ] = A[j � 1]
A[j � 1] = tmp

j = j � 1
end while

end for

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 19 / 33

Insertion Sort Description

Example

A: 2 6 3 1 4

Idea: insert A[i ] in the correct position in A[0]; : : : ;A[i � 1]

initially, i = 0 and A[0] = 2 is sorted

i = 1

A:

i = 2

A:

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 20 / 33



Insertion Sort Description

Example (cont.)

i = 3

A:

i = 4

A:

Finished! A[0]; : : : ;A[4] sorted

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 21 / 33

Insertion Sort Analysis

Inner Loop: Loop Invariant

Loop Invariant: at the beginning of each execution of the inner loop
body

i ; j 2 N

1 � i < n and 0 < j � i

A[h] � A[h + 1] for 0 � h < j � 1 and j � h < i

if j > 0 and j < i then A[j � 1] � A[j + 1]

Entries of A have been reordered; otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 22 / 33

Insertion Sort Analysis

Inner Loop: Interpretation of Loop Invariant

A: j � 1 j j + 1 i

| {z }
sorted

| {z }
sorted

Can be used to establish that the following holds at the end of each
execution of the inner loop body:

i and j are integers such that 0 � j � i � 1 � n � 2

A[0]; : : : ;A[j � 1] are sorted

A[j ]; : : : ;A[i ] are sorted (so that A[0]; : : : ;A[i ] are sorted if j = 0)

if j > 0 and j < i ; then A[j � 1] � A[j + 1]; so that A[0]; : : : ;A[i ] are
sorted if A[j � 1] � A[j ]

It follows that A[0]; : : : ;A[i ] are sorted when this loop terminates.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 23 / 33

Insertion Sort Analysis

Inner Loop: Loop Variant and Application

Loop Variant: f (n; i ; j) = j

decreasing integer function

when f (n; i ; j) = 0 we have j = 0 and the loop terminates

Application:

initial value is i

worst-case number of iterations is i

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 24 / 33



Insertion Sort Analysis

Outer Loop: Semantics

Once again, the outer for loop can be rewritten as a while loop for
analysis. Since the inner loop is already a while loop, the new outer while
loop would be as follows.

i = 1
while i � n � 1 do

j = i

Inner loop of original program

i = i + 1
end while

This program will be analyzed in order establish the correctness and
e�ciency of the original one.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 25 / 33

Insertion Sort Analysis

Outer Loop

Loop Invariant: at the beginning of each execution of the outer loop
body:

1 � i < n

A[0];A[1]; : : : ;A[i � 1] are sorted

Entries of A have been reordered; otherwise unchanged.

Thus, the loop invariant, �nal execution of the loop body, and failure of
the loop test establish that

A[0]; : : : ;A[i � 1] are sorted,

as i = n when the loop terminates, A is sorted

Loop Variant: f (n; i) = n � i

number of iterations is f (n; 1) = n � 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 26 / 33

Insertion Sort Analysis

Analysis of Insertion Sort

Worst-case: �(n2) steps

inner loop iterates i times (constant steps per iteration)

outer loop iterates n � 1 times

total number of steps is at most

c0 +
n�1X
i=1

c1i = c0 + c1
n(n � 1)

2

Conclusion: Worst-case running time is in O(n2).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 27 / 33

Insertion Sort Analysis

Analysis of Insertion Sort, Concluded

Worst-Case, Continued: For every integer n � 1 consider the operation
on this algorithm on an input array A such that

the length of A is n

the entries of A are distinct

A is sorted in decreasing order, instead of increasing order

It is possible to show that the algorithm uses 
(n2) steps on this input
array.

Conclusion: The worst-case running time is in �(n2).

Best-Case: �(n) steps are used in the best case.

Proof: Exercise. Consider an array whose entries are already sorted as
part of this.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 28 / 33



Bubble Sort Description

Bubble Sort

Idea:

Similar, in some ways, to \Selection Sort"

Repeatedly sweep from right to left over the unsorted (rightmost)
portion of the array, keeping the smallest element found and moving
it to the left

Result: After the i th stage,

A[0];A[1]; : : : ;A[i � 1]

are the i smallest elements in the entire array, in sorted order

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 29 / 33

Bubble Sort Description

Pseudocode

void Bubble Sort(int [] A)

for i from 0 to n � 1 do

for j from n � 2 down to i do

if A[j ] > A[j + 1] then
fSwap A[j ] and A[j + 1]g
tmp = A[j ]
A[j ] = A[j + 1]
A[j + 1] = tmp

end if

end for

end for

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 30 / 33

Bubble Sort Analysis

Analysis of Inner Loop

Exercise!

Rewrite the inner loop as an equivalent while loop (preceded by an
initialization statement)

Try to use your understanding of what the inner loop does to �nd a
\loop invariant."

This should include enough information so that it can be proved to
hold (probably using mathematical induction) and so that it can be
used to establish correctness of the outer loop.

Try to �nd a \loop variant" for the inner loop as well.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 31 / 33

Bubble Sort Analysis

Analysis of Outer Loop

Begin, as usual, by rewriting this loop as an equivalent while loop
(preceded by an initialization statement)

The loop invariant and loop variant given for the outer loop of the
\Selection Sort" algorithm can be modi�ed to include the fact that
the smallest elements in the array are located in the part of the array
that has currently been sorted.

Proving this is di�erent, since the details of the inner loops of these
two algorithms are quite di�erent.

The application of the loop invariant and loop variant to establish
correctness are then much the same as for the \Selection Sort" algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 32 / 33



Comparisons

Comparisons

All three algorithms have worst-case complexity �(n2)

Selection sort only swaps O(n) elements, even in the worst case. This
is an advantage when exchanges are more expensive than
comparisons.

On the other hand, Insertion sort has the best \best case" complexity.
It also performs well if the input as already partly sorted.

Bubble sort is generally not used in practice.

Note: Asymptotically faster algorithms exist and will be presented next.
These \asymptotically faster" algorithms are better choices when the input
size is large and worst-case performance is critical.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #22 33 / 33


	Introduction
	Selection Sort
	Description
	Analysis

	Insertion Sort
	Description
	Analysis

	Bubble Sort
	Description
	Analysis

	Comparisons

