Computer Science 331
 Merge Sort

Mike Jacobson

Department of Computer Science University of Calgary

Lecture \#23Introduction
(2) Merging and MergeSort

- Merge
- MergeSort
(3) Analysis
- MergeSort
- Merge

The "Merging" Problem

Merge Sort is is an asymptotically faster algorithm than the sorting algorithms we have seen so far.

- It can be used to sort an array of size n using $\Theta\left(n \log _{2} n\right)$ operations in the worst case.

Presented here: A version that takes an input array A and produces another sorted array B (containing the entries of A, rearranged)

A solution to the "Merging Problem" (presented next) is a subroutine that is used to do much of the work.

Reference: Textbook, Section 11.1

Calling Sequence: void merge(int [] A_{1}, int [] A_{2}, int [] B)
Precondition:

- A_{1} is a sorted array of length n_{1} (positive integer) such that

$$
A_{1}[h] \leq A_{1}[h+1] \quad \text { for } 0 \leq h \leq n_{1}-2
$$

- A_{2} is a sorted array of length n_{2} (positive integer) such that

$$
A_{2}[h] \leq A_{2}[h+1] \quad \text { for } 0 \leq h \leq n_{2}-2
$$

- Entries of A_{1} and A_{2} are integers (more generally, objects from the same ordered class)

Postcondition:

- B is a sorted array of length $n_{1}+n_{2}$, so that

$$
B[h] \leq B[h+1] \quad \text { for } 0 \leq h \leq n_{1}+n_{2}-2
$$

- Entries of B are the entries of A_{1} together with the entries of A_{2}, reordered but otherwise unchanged
- A_{1} and A_{2} have not been modified

Maintain indices into each array (each initially pointing to the leftmost element)

repeat

- Compare the current elements of each array
- Append the smaller entry onto the "end" of B, advancing the index for the array from which this entry was taken
until one of the input arrays has been exhausted
Append the rest of the other input array onto the end of B
Pseudocode Merging and MergeSort Merge

Pseudocode, Continued

```
void merge(int [] A , int [] A , int [] B)
    n}=l=length(\mp@subsup{A}{1}{});\mp@subsup{n}{2}{}=l=l\mp@code{gth}(\mp@subsup{A}{2}{}
    Declare B to be an array of length n}\mp@subsup{n}{1}{}+\mp@subsup{n}{2}{
    i
    while (i}\mp@subsup{i}{1}{<}\mp@subsup{n}{1}{})\mathrm{ and (i2< n
        if }\mp@subsup{A}{1}{}[\mp@subsup{i}{1}{}]\leq\mp@subsup{A}{2}{}[\mp@subsup{i}{2}{}]\mathrm{ then
            B[j] = A A [i_i]; i
        else
            B[j]= A2[i, ]; i i = i_ +1
        end if
        j=j+1
    end while
```

 \{Copy remainder of \(A_{1}\) (if any) \(\}\)
 while \(i_{1}<n_{1}\) do
 \(B[j]=A_{1}\left[i_{1}\right] ; i_{1}=i_{1}+1 ; j=j+1\)
 end while
 \{Otherwise copy remainder of \(A_{2}\) \}
 while $i_{2}<n_{2}$ do
$B[j]=A_{2}\left[i_{2}\right] ; i_{2}=i_{2}+1 ; j=j+1$
end while

Note: Running time is $\Theta\left(n_{1}+n_{2}\right)$, where the input arrays have size n_{1} and n_{2}

Pseudocode

```
void mergeSort(int [] A, int [] B)
    n=A.length
    if }n==1\mathrm{ then
        B[0] = A[0]
    else
        n}=\lceiln/2
        n}=n-\mp@subsup{n}{1}{}{\mathrm{ so that n}\mp@subsup{n}{2}{=\lfloorn/2\rfloor}
        Set }\mp@subsup{A}{1}{}\mathrm{ to be }A[0],\ldots,A[\mp@subsup{n}{1}{}-1]{\mathrm{ length }\mp@subsup{n}{1}{}
        Set A2 to be A[n}\mp@subsup{n}{1}{}],\ldots,A[n-1]{length \mp@subsup{n}{2}{}
        mergeSort( (A, 的)
        mergeSort (A2, B2)
        merge( }\mp@subsup{B}{1}{},\mp@subsup{B}{2}{},B
    end if
```


Theorem 1

If mergeSort is run on an input array A of size $n \geq 1$, then the algorithm eventually halts, producing the desired sorted array as output.

Prove by (strong) induction on n (assuming that merge is correct!):
Base Case: $n=1$

- if $n=1$, array consists of one element (array is sorted trivially)
- algorithm returns B containing a copy of the single element in the array (terminates with correct output)

Termination and Efficiency

Let $T(n)$ be the number of steps used by this algorithm when given an input array of length n, in the worst case.

We can see the following by inspection of the code:

$$
T(n) \leq \begin{cases}c_{0} & \text { if } n=1 \\ T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)+c_{1} n & \text { if } n \geq 2\end{cases}
$$

for some constants c_{0} and c_{1}.
Special Case: If $n=2^{k}$ is a power of two, we can rewrite this as

$$
T(n) \leq \begin{cases}c_{0} & \text { if } n=1 \\ 2 T(n / 2)+c_{1} n & \text { if } n \geq 2\end{cases}
$$

Inductive hypothesis:

- assume the algorithm is correct for input arrays of size $k<n$

Prove that B is sorted under this assumption. Let A be an array of length $n \geq 2$:

- A_{1} contains first n_{1} elements of A sorted
- A_{2} contains remaining n_{2} elements of A
- $n_{1}=\lceil n / 2\rceil<n$ and $n_{2}=\lfloor n / 2\rfloor<n$, so inductive hypothesis implies that B_{1} is A_{1} sorted and B_{2} is A_{2} sorted
- merge computes B containing all elements of A sorted (assuming that merge is correct earlier)
- hence, algorithm is partially correct by induction.

Theorem 2
If $n=2^{k}$, and $c=\max \left(c_{0}, c_{1}\right)$, then

$$
T(n) \leq c n \log _{2}(2 n)=c n(k+1) .
$$

Prove by induction on k

- Base case $(k=0)$: for $k=0$ we have $n=2^{0}=1$, and

$$
T(1)=c_{0} \leq c n(k+1)=c
$$

because $c=\max \left(c_{0}, c_{1}\right)$.

Termination and Efficiency

Termination and Efficiency (General Case)
Inductive hypothesis: Assume $k>0$ and theorem holds for $k-1$:
Show that the theorem holds for k :

- By definition we have, for $n=2^{k}$,

$$
T(n) \leq 2 T(n / 2)+c_{1} n
$$

- by assumption $T(n / 2)=T\left(2^{k-1}\right) \leq c(n / 2) k$ and we obtain

$$
\begin{aligned}
T(n) & \leq 2(c(n / 2) k)+c_{1} n \\
& =c n k+c_{1} n \\
& \leq c n k+c n \quad\left(c_{1} \leq c=\max \left(c_{0}, c_{1}\right)\right) \\
& =c n(k+1)
\end{aligned}
$$

Consider the function $L(n)=\left\lceil\log _{2} n\right\rceil$ for $n \geq 1$
Useful Property:

- $L(\lceil n / 2\rceil)=L(n)-1$ and $L(\lfloor n / 2\rfloor) \leq L(n)-1$ for every integer $n \geq 2$

Theorem 3
If $n \geq 1$ then $T(n) \leq c n L(2 n) \leq c n\left(\log _{2} n+2\right)$.

Method of Proof: induction on n
as required.

Analysis MergeSort
 Further Observations

It can be shown (by consideration of particular inputs) that the worst-case running time of this algorithm is also in $\Omega\left(n \log _{2} n\right)$. It is therefore in $\Theta\left(n \log _{2} n\right)$.

- This is preferable to the classical sorting algorithms, for sufficiently large inputs, if worst-case running time is critical.
- The classical algorithms are faster on sufficiently small inputs because they are simpler.

Alternative Approach: A "hybrid" algorithm:

- Use the recursive strategy given above when the input size is greater than or equal to some (carefully chosen) "threshold" value.
- Switch to a simpler, nonrecursive algorithm (that is faster on small inputs) as soon as the input size drops to below this "threshold" value.

Application of Loop Invariant: At the end of every execution of the body of the first loop:
(1) i_{1}, i_{2} are integers such that $0 \leq i_{1} \leq n_{1}$ and $0 \leq i_{2} \leq n_{2}$
(2) Condition 2 of the loop invariant is satisfied

Failure of the loop test ensures that these hold and either $i_{1}=n_{1}$ or $i_{2}=n_{2}$.
Loop Variant for Loop \#1: $f\left(n_{1}, n_{2}, j\right)=n_{1}+n_{2}-j$

- loop invariant implies that $j=i_{1}+i_{2}$, so that

$$
f\left(n_{1}, n_{2}, j\right)=\left(n_{1}-i_{1}\right)+\left(n_{2}-i_{2}\right)
$$

- Initial value is $n_{1}+n_{2}$

Analysis for Loop \#2, Continued

Failure of the loop test implies that, on termination of the second loop,
(1) $i_{1}=n_{1}$ and i_{2} is an integer such that $0 \leq i_{2}<n_{2}$
(2) Part 2 of the loop invariant for the first loop is satisfied.

Note: we must consider the possibility that Loop \#2 was skipped when considering the value of i_{2} at this point in the code.

Loop Variant for Loop \#2: Same as for Loop \#1. Note that the value of this function has not been changed between the end of loop \#1 and the beginning of loop \#2.

Loop Invariant for Loop \#2: At the beginning of each execution of the body of the second loop
(1) $i_{2}=n_{2}$ and i_{1} is an integer such that $0 \leq i_{1}<n_{1}$
(2) Part 2 of the loop invariant for the first loop is satisfied.

At the end of each execution of the body of this loop
(1) $i_{2}=n_{2}$ and i_{1} is an integer such that $0 \leq i_{1} \leq n_{1}$
(2) Part 2 of the loop invariant for the first loop is satisfied.

```
Analysis for Loop #3
```

Loop Invariant for Loop \#3: At the beginning of each execution of the body of the third loop
(1) $i_{1}=n_{1}$ and i_{2} is an integer such that $0 \leq i_{2}<n_{2}$
(2) Part 2 of the loop invariant for the first loop is satisfied.

At the end of each execution of the body of this loop
(1) $i_{1}=n_{1}$ and i_{2} is an integer such that $0 \leq i_{2} \leq n_{2}$
(2) Part 2 of the loop invariant for the first loop is satisfied.

Failure of the loop test implies that, on termination of the third loop,
(1) $i_{1}=n_{1}$ and $i_{2}=n_{2}$
(2) Part 2 of the loop invariant for the first loop is satisfied.

These properties establish the postcondition of the merging problem.

Loop Variant for Loop \#3: Same as for Loop \#1. Note that the value of this function has not been changed between the end of loop \#2 and the beginning of loop $\# 3$.

Correctness:

- loop invariants can be used to prove partial correctness
- loop variant implies that the for loops (and hence the entire algorithm) terminate
- therefore, merge is correct

Efficiency:

- each loop body requires a constant number of steps
- total number of iterations is $n_{1}+n_{2}$
- therefore, merge is $\Theta\left(n_{1}+n_{2}\right)$

