
Computer Science 331
Applications of Binary Heaps

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #26

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 1 / 35

Outline

1 HeapSort

Description of the Algorithm

Example

Analysis

2 Priority Queues

Overview

Implementation

3 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 2 / 35

HeapSort Description of the Algorithm

HeapSort

A deterministic sorting algorithm that can be used to sort an array of

length n using �(n log n) operations in the worst case

Unlike MergeSort (which has the same asymptotic worst-case

performance) this algorithm can be used to sort \in place," overwriting the

input array with the output array, and using only a constant number of

additional registers for storage

A disadvantage of this algorithm is that it is a little bit more complicated

than the other asymptotically fast sorting algorithms we are studying (and

seems to be a bit slower in practice)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 3 / 35

HeapSort Description of the Algorithm

HeapSort

Idea:

An array A of positive length, storing values from some ordered

type T, can be turned into a Max-Heap of size 1 simply by setting

heap-size(A) to be 1

Inserting A[1];A[2]; : : : ;A[A.length-1] produces a Max-Heap

while reordering the entries of A (without changing them, otherwise)

Repeated calls to deleteMax will then return the entries, listed in

decreasing order, while freeing up the space in A where they should be

located when sorting the array.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 4 / 35



HeapSort Description of the Algorithm

HeapSort

void heapSort(T[] A)

heap-size(A) = 1

i = 1

while i < A.length do

insert(A; A[i])
i = i+ 1

end while

i = A.length� 1

while i > 0 do

largest = deleteMax(A)
A[i] = largest
i = i� 1

end while

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 5 / 35

HeapSort Example

Example (Input)

6

8

3

2

7 4

1 9

0 1 2 3 4 5 6 7

2 7 4 1 6 9 3 8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 6 / 35

HeapSort Example

Example: Before First Execution,
Loop Body, First Loop

2
0 1 2 3 4 5 6 7

2 7 4 1 6 9 3 8

heap-size(A) = 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 7 / 35

HeapSort Example

Example: Before Second Execution,
Loop Body, First Loop

7

2

0 1 2 3 4 5 6 7

7 2 4 1 6 9 3 8

heap-size(A) = 2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 8 / 35



HeapSort Example

Example: Before Third Execution,
Loop Body, First Loop

7

2 4

0 1 2 3 4 5 6 7

7 2 4 1 6 9 3 8

heap-size(A) = 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 9 / 35

HeapSort Example

Example: Before Fourth Execution,
Loop Body, First Loop

1

7

2 4

0 1 2 3 4 5 6 7

7 2 4 1 6 9 3 8

heap-size(A) = 4

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 10 / 35

HeapSort Example

Example: Before Fifth Execution,
Loop Body, First Loop

7

6 4

1 2

0 1 2 3 4 5 6 7

7 6 4 1 2 9 3 8

heap-size(A) = 5

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 11 / 35

HeapSort Example

Example: Before Sixth Execution,
Loop Body, First Loop

9

6 7

1 2 4

0 1 2 3 4 5 6 7

9 6 7 1 2 4 3 8

heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 12 / 35



HeapSort Example

Example: Before Seventh Execution,
Loop Body, First Loop

9

6 7

1 2 4 3

0 1 2 3 4 5 6 7

9 6 7 1 2 4 3 8

heap-size(A) = 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 13 / 35

HeapSort Example

Example: After Seventh Execution,
Loop Body, First Loop

8

9

7

6 2 4 3

1

0 1 2 3 4 5 6 7

9 8 7 6 2 4 3 1

heap-size(A) = 8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 14 / 35

HeapSort Example

Example: Before First Execution,
Loop Body, Second Loop

i = 7

8

9

7

6 2 4 3

1

0 1 2 3 4 5 6 7

9 8 7 6 2 4 3 1

heap-size(A) = 8

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 15 / 35

HeapSort Example

Example: Before Second Execution,
Loop Body, Second Loop

i = 6

8

6 7

1 2 4 3

0 1 2 3 4 5 6 7

8 6 7 1 2 4 3 9

heap-size(A) = 7

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 16 / 35



HeapSort Example

Example: Before Third Execution,
Loop Body, Second Loop

i = 5

4

1

7

6

2 3

0 1 2 3 4 5 6 7

7 6 4 1 2 3 8 9

heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 17 / 35

HeapSort Example

Example: Before Fourth Execution,
Loop Body, Second Loop

i = 4

4

1

6

3

2

0 1 2 3 4 5 6 7

6 3 4 1 2 7 8 9

heap-size(A) = 5

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 18 / 35

HeapSort Example

Example: Before Fifth Execution,
Loop Body, Second Loop

i = 3

1

3

4

2

0 1 2 3 4 5 6 7

4 3 2 1 6 7 8 9

heap-size(A) = 4

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 19 / 35

HeapSort Example

Example: Before Sixth Execution,
Loop Body, Second Loop

i = 2

2

3

1

0 1 2 3 4 5 6 7

3 1 2 4 6 7 8 9

heap-size(A) = 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 20 / 35



HeapSort Example

Example: Before Seventh Execution,
Loop Body, Second Loop

i = 1

1

2
0 1 2 3 4 5 6 7

2 1 3 4 6 7 8 9

heap-size(A) = 2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 21 / 35

HeapSort Example

Example: After Seventh Execution,
Loop Body, Second Loop

i = 0

1
0 1 2 3 4 5 6 7

1 2 3 4 6 7 8 9

heap-size(A) = 1

Stop | array is sorted!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 22 / 35

HeapSort Analysis

First Loop | Partial Correctness

Loop Invariant: The following properties are satis�ed at the beginning of

each execution of the body of the �rst loop.

a) i is an integer such that 1 � i < A.length

b) A represents a heap with size i

c) The entries of the array A have been reordered but are otherwise

unchanged

At the end of each execution of the body of the �rst loop, the following

properties are satis�ed.

i is an integer such that 1 � i � A.length

Parts (b) and (c) of the loop invariant are satis�ed

On termination of this loop i = A.length, so A represents a heap with

size A.length, and the entries of A have been reordered but are

otherwise unchanged.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 23 / 35

HeapSort Analysis

First Loop | Termination and E�ciency

Loop Variant: A.length� i

Application:

Number of executions of the body of this loop is at most:

A.length� 1

The cost of a single execution of the body of this loop is at most: k

O(log n); where n = A.length

Conclusion: The number of steps used by this loop in the worst case

is at most:

O(n log n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 24 / 35



HeapSort Analysis

Second Loop | Partial Correctness

Loop Invariant: The following properties are satis�ed at the beginning of

each execution of the body of the second loop.

a) i is an integer such that 1 � i < A.length

b) A represents a heap with size i+ 1

c) if i < A.length� 1 then A[j] � A[i+1] for every integer j such

that 0 � j � i

d) A[j] � A[j+1] for every integer j such that

i+ 1 � j < A.length� 1

e) the entries of A have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 25 / 35

HeapSort Analysis

Second Loop | Partial Correctness

At the end of each execution of the body of the second loop, the following

properties are satis�ed.

i is an integer such that 0 � i < A.length

Parts (b), (c), (d) and (e) of the loop invariant are satis�ed

On termination i = 0 and parts (b), (c), (d) and (e) of the loop invariant

are satis�ed. Notes that, when i = 0, parts (c) and (d) imply that the

array is sorted, as required.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 26 / 35

HeapSort Analysis

Second Loop | Termination and E�ciency

Loop Variant: i

Application:

Number of executions of the body of this loop is at most:

A.length� 1

The cost of a single execution of the body of this loop is at most:

O(log n); where n = A.length

Conclusion: The number of steps used by this loop in the worst case

is at most:

O(n log n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 27 / 35

HeapSort Analysis

Analysis of Worst-Case Running Time, Concluded

Exercise: Show that if A is an array with length n, containing n distinct

entries that already sorted in increasing order, then this HeapSort
algorithm uses 
(n log n) steps on input A.

Conclusion: The worst-case running time of HeapSort (when given an

input array of length n) is in �(n log n).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 28 / 35



Priority Queues Overview

Priority Queues

De�nition: A priority queue is a data structure for maintaining a

multiset S of elements, of some type V, each with an associated value (of

some ordered type P) called a priority.

A class that implements max-priority queue provides the following

operations (not, necessarily, with these names):

void insert(V value, P priority): Insert the given value
into S, using the given priority as its priority in this priority queue

V maximum(): Report an element of S stored in this priority that

has highest priority, without changing the priority queue (or S)

V extract-max(): Remove an element of S with highest priority

from the priority queue (and from S) and return this value as output

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 29 / 35

Priority Queues Overview

Priority Queues

Priority Queues in Java:

Class PriorityQueue in the Java Collections framework implements

a \min-priority queue" | which would provide methods minimum
and extract-min to replace maximum and extract-max,
respectively

Also implements the Queue interface, so the names insert,
minimum, and extract-min of methods are replaced by the names

add, peek, and remove, respectively.

Furthermore, the signature of insert is a little di�erent | no

priority is provided | because the values themselves are used as

their priorities (according to their \natural order")

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 30 / 35

Priority Queues Overview

Priority Queues

Dealing With This Restriction:

In order to provide more general priorities, one can simply write a

class, each of whose objects \has" a value of type V (that is, the

element of S it represents) and that also \has" a value of type P (that

is, the priority). The class should implement the Comparable
interface, and compareTo should be implemented using the ordering

for priorities

Applications:

Scheduling: Priorities reect the order of requests and determine the

order in which they should be served

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 31 / 35

Priority Queues Implementation

Implementation

Binary Heaps are often used to implement priority queues.

Example: One representation of a max-priority queue including keys

S = f2; 4; 8; 12; 14; 16g is as follows:

16

12 14

2 4 8

0 1 2 3 4 5 6 7

16 12 14 2 4 8 9 3

A.length = 8;

heap-size(A) = 6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 32 / 35



Priority Queues Implementation

Implementation of Operations

A \max-priority queue" can be implemented, in a straightforward way,

using a Max-Heap.

insert: Use the insert method for the binary heap that is being

used to implement this priority queue

maximum: Throw an exception if the binary heap has size zero;

return data stored at position 0 if the array that represents the heap,

otherwise

extract-min: Use the deleteMax method for the binary heap that

implements this priority queue

Consequence: If the priority queue has size n then insert
and extract-min use �(log n) operations in the worst case, while

maximum uses �(1) operations in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 33 / 35

Priority Queues Implementation

Binomial and Fibonacci Heaps

Introduction to Algorithms, Chapter 19 and 20

Better than binary heaps if Union operation must be supported:

creates a new heap consisting of all nodes in two input heaps

Function Binary Heap Binomial Heap Fib. Heap

(worst-case) (worst-case) (amortized)

Insert �(log n) O(log n) �(1)

Maximum �(1) O(log n) �(1)

Extract-Max �(log n) �(log n) O(log n)

Increase-Key �(log n) �(log n) �(1)

Union �(n) O(log n) �(1)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 34 / 35

References

References

Information about HeapSort and priority queues is also available in the

textbook.

Priority queues are discussed in Section2 8.1 and 8.2 of the textbook

HeapSort, and implementing a priority queue using a heap, is

discussed in Section 8.3 of the textbook

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 35 / 35


	HeapSort
	Description of the Algorithm
	Example
	Analysis

	Priority Queues
	Overview
	Implementation

	References

