Outline

Computer Science 331 @ HeapSort

Applications of Binary Heaps @ Description of the Algorithm
@ Example
@ Analysis

Mike Jacobson

Department of Computer Science 9 Prlorlty _Queues
University of Calgary @ Overview

@ Implementation
Lecture #26

© References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 1/35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 2 /35

HeapSort Description of the Algorithm HeapSort Description of the Algorithm

HeapSort HeapSort

A deterministic sorting algorithm that can be used to sort an array of
length n using ©(nlog n) operations in the worst case

Idea:

@ An array A of positive length, storing values from some ordered
type T, can be turned into a Max-Heap of size 1 simply by setting

Unlike MergeSort (which has the same asymptotic worst-case
heap-size(A) to be 1

performance) this algorithm can be used to sort “in place,” overwriting the
input array with the output array, and using only a constant number of o Inserting A[1],A[2],...,A[A.1length-1] produces a Max-Heap
additional registers for storage while reordering the entries of A (without changing them, otherwise)

@ Repeated calls to deleteMax will then return the entries, listed in
decreasing order, while freeing up the space in A where they should be
located when sorting the array.

A disadvantage of this algorithm is that it is a little bit more complicated
than the other asymptotically fast sorting algorithms we are studying (and
seems to be a bit slower in practice)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 3/35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 4 /35

HeapSort Description of the Algorithm HeapSort Example

HeapSort Example (Input)

void heapSort(T[] A)
heap-size(A) =1
i=1

while i < A.length do 12 7]
insert(A, A[i]) \

i=i+1 (4)
end while 6 é é
i=A.length—-1
while i > 0 do e

largest = deleteMax(A)

A[i] = largest Q

i=i-1
end while

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 5 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 6 /35

HeapSort Example HeapSort Example

Example: Before First Execution, Example: Before Second Execution,

Loop Body, First Loop Loop Body, First Loop

@ 0 1 2 3 45 6 7
@ 01 2 3 45 67 [7]2]4]1]6]9[3]8]
’2‘7‘4‘1‘6‘9‘3‘8‘ / heap-size(A) =2
1

heap-size(A) =

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 7 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 8 /35

HeapSort Example HeapSort Example

Example: Before Third Execution, Example: Before Fourth Execution,

Loop Body, First Loop Loop Body, First Loop

@ 01 23 45 6 7 /@ yg\;\i\i\g\g\g\;\
/ \ (7l2]4]t[6]9[3]8] @ \@ heap-size(A) =4
@ @ heap-size(A) =3 6

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 9 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 10 / 35

HeapSort Example HeapSort Example

Example: Before Fifth Execution, Example: Before Sixth Execution,

Loop Body, First Loop Loop Body, First Loop

10\1\2\3\4\5\6\7\ «) 10\1\2\3\4\5\6\7\
716 9138 9116|7124]3|8
/ \ heap-size(A) =5 @/ \@ heap-size(A) =6

8N 50 é

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 11 / 35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 12 / 35

HeapSort Example HeapSort Example

Example: Before Seventh Execution, Example: After Seventh Execution,

Loop Body, First Loop

0 1 2 3 4 5 6 7
/@\ (9]6]7]1]2]4]3]8]
@ % heap-size(A) =7

Loop Body, First Loop

0 1 23 456 7
(9f8f7[o6]2[4]3]1]

heap-size(A) =38

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 13 / 35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 14 / 35

Example: Before First Execution, Example: Before Second Execution,
Loop Body, Second Loop Loop Body, Second Loop
i=7 i=6
01 2 3 45 6 7 01 2 3 45 6 7
A (9l8l7[6[2[4]3]1] /\ (8l6]7[1[2[4]3]9]
é@é heap-size(A) =8 @ heap-size(A) =7
ONO

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 15 / 35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 16 / 35

HeapSort Example HeapSort Example

Example: Before Third Execution, Example: Before Fourth Execution,
Loop Body, Second Loop Loop Body, Second Loop
@ 01 2 3 45 6 7 @ 01 2 3 45 6 7
(716]4[1[2[3]8]9] \ (6]3]4f1[2][7]8]9]
heap-size(A) =6 @ heap-size(A) =5
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 17 / 35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 18 / 35

HeapSort Example HeapSort Example

Example: Before Fifth Execution, Example: Before Sixth Execution,

Loop Body, Second Loop Loop Body, Second Loop

i=3
i=2
() 10\1\2\3\4\5\6\7\ () 0 1 23 45 07
N FE e LB (3[il2[4 6718]9]
@ @ heap-size(A) =4 / \ hoap-size () — 3

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 19 / 35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 20 / 35

HeapSort Example HeapSort Example

Example: Before Seventh Execution, Example: After Seventh Execution,

Loop Body, Second Loop Loop Body, Second Loop

1=0
(5) 01 2 3 4 5 6 7
2T1[3]4]6]7]8]9] TTaTsT4Te T e T
y Y [1]2]3]4]6]7]8]9]
@ capTsizeli) = heap-size(A) =1

Stop — array is sorted!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 21 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 22 /35

HeapSort ~ Analysis HeapSort ~ Analysis

First Loop — Partial Correctness First Loop — Termination and Efficiency

Loop Invariant: The following properties are satisfied at the beginning of Loop Variant: A.length —1

each execution of the body of the first loop. Application:

a) 1is an integer such that 1 <1i < A.length @ Number of executions of the body of this loop is at most:

b) A represents a heap with size i
. . A.length -1
c) The entries of the array A have been reordered but are otherwise

unchanged

At the end of each execution of the body of the first loop, the following ® The cost of a single execution of the body of this loop is at most: k

properties are satisfied. O(log n), where n=A.length
@ 1iis an integer such that 1 < i < A.length

e Parts (b) and (c) of the loop invariant are satisfied) _ _
@ Conclusion: The number of steps used by this loop in the worst case

On termination of this loop 1 = A.length, so A represents a heap with is at most:
size A.length, and the entries of A have been reordered but are O(nlog n)
otherwise unchanged.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 23 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 24 [/ 35

HeapSort ~ Analysis HeapSort ~ Analysis

Second Loop — Partial Correctness Second Loop — Partial Correctness

Loop Invariant: The following properties are satisfied at the beginning of
each execution of the body of the second loop. At the end of each execution of the body of the second loop, the following

a) 1 is an integer such that 1 <i < A.length properties are satisfied.

@ 1iis an integer such that 0 < i < A.length
e Parts (b), (c), (d) and (e) of the loop invariant are satisfied

b) A represents a heap with size 1 41

c) if i < A.length — 1 then A[j] < A[i+1] for every integer j such

that 0 < j<1 On termination i = 0 and parts (b), (c), (d) and (e) of the loop invariant

d) A[j] < A[j*'l] for every integer j such that are satisfied. Notes that, when 1 = 0, parts (c) and (d) imply that the
i+1<j<A.length-1 array is sorted, as required.

e) the entries of A have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 25 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 26 / 35

HeapSort ~ Analysis HeapSort ~ Analysis

Second Loop — Termination and Efficiency Analysis of Worst-Case Running Time, Concluded

Loop Variant: i

Application:

@ Number of executions of the body of this loop is at most:

A.length -1 Exercise: Show that if A is an array with length n, containing n distinct
entries that already sorted in increasing order, then this HeapSort
algorithm uses Q(nlog n) steps on input A.

@ The cost of a single execution of the body of this loop is at most: . o _
& y P Conclusion: The worst-case running time of HeapSort (when given an

O(log n), where n = A.length input array of length n) is in ©(nlog n).

@ Conclusion: The number of steps used by this loop in the worst case
is at most:
O(nlog n)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 27 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 28 /35

Priority Queues Overview Priority Queues Overview

Priority Queues Priority Queues

Definition: A priority queue is a data structure for maintaining a Priority Queues in Java:
multiset S of elements, of some type V, each with an associated value (of

I o Class PriorityQueue in the Java Collections framework implements
some ordered type P) called a priority.

a “min-priority queue” — which would provide methods minimum
A class that implements max-priority queue provides the following and extract-min to replace maximum and extract-max,
operations (not, necessarily, with these names): respectively
e void insert(V value, P priority): Insert the given value @ Also implements the Queue interface, so the names insert,
into S, using the given priority as its priority in this priority queue minimum, and extract-min of methods are replaced by the names

e V maximum(): Report an element of S stored in this priority that add, peek, and remove, respectively.

has highest priority, without changing the priority queue (or S) o Furthermore, the signature of insert is a little different — no
priority is provided — because the values themselves are used as

e V extract-max(): Remove an element of S with highest priority LOLLLY _ _
their priorities (according to their “natural order”)

from the priority queue (and from S) and return this value as output

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 29 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 30 /35

Priority Queues Overview Priority Queues Implementation

Priority Queues Implementation

. . . L. Binary Heaps are often used to implement priority queues.
Dealing With This Restriction:

@ In order to provide more general priorities, one can simply write a Example: One representation of a max-priority queue including keys
class, each of whose objects “has” a value of type V (that is, the S =1{2,4,8,12,14,16} is as follows:
element of S it represents) and that also “has” a value of type P (that
is, the priority). The class should implement the Comparable
interface, and compareTo should be implemented using the ordering 0 1 2 g ‘ j ‘ Z ‘ g ‘ ; ‘

for priorities / \ [16 [12] 14 |
A.length =8;

Applications: heap-size(A) =6

@ Scheduling: Priorities reflect the order of requests and determine the
order in which they should be served E

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 31/35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 32/35

Priority Queues Implementation Priority Queues Implementation

Implementation of Operations Binomial and Fibonacci Heaps

A “max-priority queue” can be implemented, in a straightforward way, Introduction to A/gorithmsy Chapter 19 and 20
using a Max-Heap.
o insert: Use the insert method for the binary heap that is being Better than binary heaps if Union operation must be supported:
used to implement this priority queue @ creates a new heap consisting of all nodes in two input heaps
@ maximum: Throw an exception if the binary heap has size zero;
return data stored at position 0 if the array that represents the heap, Function Binary Heap | Binomial Heap | Fib. Heap
otherwise (worst-case) | (worst-case) | (amortized)
o extract-min: Use the deleteMax method for the binary heap that Ins?ert ©(log n) O(log n) (1)
implements this priority queue Maximum (1) Oflog n) ©(1)
Extract-Max O(log n) O(log n) O(log n)
Consequence: If the priority queue has size n then insert Increase-Key O(log n) O(log n) o(1)
and extract-min use ©(log n) operations in the worst case, while Union ©(n) O(log n) o(1)
maximum uses ©(1) operations in the worst case.
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 33 /35 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 34 /35

References

References

Information about HeapSort and priority queues is also available in the
textbook.

@ Priority queues are discussed in Section2 8.1 and 8.2 of the textbook

e HeapSort, and implementing a priority queue using a heap, is
discussed in Section 8.3 of the textbook

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #26 35 /35

	HeapSort
	Description of the Algorithm
	Example
	Analysis

	Priority Queues
	Overview
	Implementation

	References

