Outline

: © Introduction
Computer Science 331

Quicksort © Partitioning
@ Deterministic Partitioning

@ Randomized Partitioning

Mike Jacobson
© Quicksort

@ Deterministic Quicksort
@ Randomized Quicksort

Department of Computer Science
University of Calgary

Lecture #27]
O Analysis

© References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 1/25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 2 /25

Introduction Introduction

Introduction

@ Choose an element x and reorder the array as follows:

Quicksort: e x is in the correct spot if the array was sorted
C i~ Y . . o elements < x are to the left of x in the array

@ A recursive “Divide and Conquer” sorting algorithm o elements > x are to the right of x in the array

@ A simple deterministic version uses

o O(n?) operations to sort an array of size n in the worst case
e O(nlog n) operations on average, assuming all relative orderings of the
(distinct) input are equally likely

@ Recursively sort subarray of elements to the left of x

© Recursively sort subarray of elements to the right of x

@ The expected number of operations used by a randomized version is Step 1 is the key to this method being efficient. Issues:
in O(nlog n) for any input array of size n e speed (can be done in time ©(n))

@ position of x — want the final position of x to be the middle, so the
recursive calls are on arrays of size close to half as long as the original

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 3/25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 4 /25

Partitioning Partitioning Deterministic Partitioning
Partitioning Deterministic Partitioning

This is the process that will be used to carry out step 1.

Precondition: Idea:
@ p and r are integers such that 0 <p <r < A.length @ Pivot element used is the last element in the part of the array being
- processed. Other versions of this algorithm use the first element
Postcondition: instead

o Value returned is an integer q such thatp< g <r : .
gerq P=as= @ Sweep from left to right over the array, exchanging elements as

o A[h] < Alq] for every integer h such that p<h <q-1 needed, so that values less than or equal to the pivot element are all
o A[h] > A[q] for every integer h such thatq+1<h<r located before values that are greater than the pivot element, in the
o If his an integer such that 0 <h < p or such that part of the array that has been processed

r+1 <h < A.length then A[h] has not been changed

@ The entries of A have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 5 /25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 6 /25

Partitioning Deterministic Partitioning Partitioning Deterministic Partitioning

Pseudocode Example

Consider the execution of DPartition(A, 3, 10) for A as follows:
int DPartition(int [] A, int p, int r)

x = A[r] 3 4 5 6 7 8 9 10
P p1 - J2f6]4f1[7[8[0]5 [
j=p Using x = A[10] = 5 as the pivot. Initially i =2, j = 3.
while j <r do
if A[j] < x then J=3:A[j] =2 < 5; increment i and swap A[3] & A[3]
i=1i+1
Swap: tmp = A[i]; A[i] = A[j]; A[j] = tmp i=3, = 3 4 5 6 7 8 9 10
end if - |2]6]4[1][7]8[0]5 |
j=j+1
end while J =4 :no change
Swap: tmp = A[i+1]; A[i+1] = A[r]; Alr] = tmp
return i+1 =3 =4 3 45 6 7 8 9 10
’ J26faf1[7]3][0]5 |

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 7/25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 8 /25

Partitioning Deterministic Partitioning Partitioning Deterministic Partitioning

Example (cont.) Example (cont.)
J=5:A[j] =4 < 5; increment i and swap A[4] & A[5] J=8: A[j] =3 < 5; increment i and swap A[6] & A[8]
=4 =5 3 4 5 7 8 9 10 =6 =8 3 45 6 7 8 9 10
’ - 2[4]6[1[7[8]0]5 [’ - 2f4fu[3]7]6]0]5 [
J=6:A[j] =1<5; increment / and swap A[5] & A[6] J=9:A[j] =0 < 5; increment / and swap A[7] & A[9]
=5, =6 3 45 6 7 8 9 10 i=7.j=9 3 45 6 7 8 9 10
’ - 2f4ftf6[7[3[0]5 [’ - 2[4ft[3]0f6[7]5 [
J =7 :no change J =10 : swap A[i + 1] = A[8] & A[10]
. 3 45 6 7 8 9 10 3 45 6 7 8 9 10
i=5,j=1 =7,/ =10
- |2[4f1fe[7[8[0]5 [B - 2[4]1]8[0]5[7[6 |
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 9 /25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 10 / 25

Partitioning Deterministic Partitioning Partitioning Deterministic Partitioning

Loop Invariant Application of the Loop Invariant

Suppose p and r are integers such that 0 < p < r < length(A).

The the following properties are satisfied at the beginning of each Suppose again that p and r are integers such that
execution of the body of the while-loop: 0 <p <r<A.length. Then the following properties are satisfied at the
© jis an integer such that p < j < r. end of each execution of the body of the while loop:
@ iisanintegersuchthatp—1<i<j—1. @ jisanintegersuchthatp < j<r
© The following hold for each integer £ such that p < ¢ < r: o Parts 2-5 of the loop invariant hold once again
o if p<¢<ithen A[/] <x, _ _ o _
o ifi+1</¢<j—1then A[/] >x, The following properties hold on termination of this loop:
o if { =1 then A[/] = x. @ j=r
Q@ A[h] has been unchanged for each integer h such that 0 <h < p or o Parts 2-5 of the loop invariant are satisfied

r <h < A.length.

© Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 11 /25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 12 / 25

Partitioning Deterministic Partitioning Partitioning Deterministic Partitioning

Partial Correctness Termination and Efficiency

)) Loop Variant: r —j
Once again, suppose that p and r are integers such that

0<p<r<A.length. Justification: decreases, if < 0 loop terminates (j = r)

If the program halts then the following conditions are satisfied on Application:

termination, if g is the value that is returned: o o
@ The initial value of the loop variant is r — p
O qis an integer such that p < q <r.

@ The following relationships hold for each integer £ such that

p<{i<r: @ Each execution of the loop body requires (at most) a constant
o ifp<f<qthen A[/] <A[q], number of operations.
o ifq<¢<rthen A[/] > Alq].
© If his an integer such that 0 <h < p orr <h < A.length then
A[h] has not been changed. @ Since the rest of the program only uses a constant number of

O Entries of A are reordered but otherwise unchanged operations, it is clear that the program terminates and that it uses
O(r — p) operations in the worst case.

Therefore the loop body is executed exactly r — p times.

Therefore the cost to execute the loop is in O(r — p).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 13 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 14 / 25

Partitioning Randomized Partitioning Partitioning Randomized Partitioning

Randomized Partitioning Randomized Partitioning: Analysis

Suppose p and r are integers such that 0 < p < r < A.length and that
RPartition is called with inputs A, p and r:
Idea: Choose the pivot element randomly from the set of values in the @ This algorithm terminates using O(r — p) operations.

part of the array to be processed. Then proceed as before. o Let g be the value that is returned on termination. Then the

following conditions hold on termination:

int RPartition(int [] A, int p, int r) e (is an integer such that p < q <.
Choose i randomly and uniformly from the set of integers between p o lf teZandp << qthen A[{] <Alq].
and r (inclusive). olffeZandq<¢<rthen A[{] > A[q].
Swap: tmp = A[i]; Ali] = Alr]; Alr] = tmp If the entries of A are distinct then g = 1 with probability
return DPartition(A, p, r) 1/(r — p + 1) for each integer i between p and r (inclusive).

@ If his an integer such that 0 <h < p orr <h < A.length then
A[h] has not been changed.

@ Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 15 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 16 / 25

Quicksort Deterministic Quicksort Quicksort Randomized Quicksort

Deterministic Quicksort Randomized Quicksort

Idea: Partition the array, then recursively sort the pieces before and after Idea: Same as deterministic Quicksort, except that randomized
the pivot element. partitioning is used.
Call quickSort(A, 0, A.length-1) to sort A: Call RQuickSort(A, 0, A.1length-1) to sort A:
void quickSort(int [] A, int p, int 1) void RQuickSort(int [] A, int p, int 1)
if p < then if p < then
q = DPartition(A, p, r) q = RPartition(4, p, r)
quickSort(4, p, g-1) RQuickSort(A, p, g-1)
quickSort(4, g+1, r) RQuickSort(A, g+1, r)
end if end if
Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 17 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 18 / 25

Analysis Analysis

Worst-Case Analysis of Deterministic Quicksort Worst-Case Analysis of Deterministic Quicksort

Let T(n) be the number of steps used by QuickSort to sort an array of
length n in the worst case. Then

If Deterministic Quicksort is applied to an array of length n whose entries
2 ifn<l, are already sorted then this algorithm uses Q(n?) steps.

T(n) <

T(k T(n—1—k ifn> 2.
ant max (T(K)+T(n) ifn>

. . Method of Proof: Induction on n, once again.
Justification: Base case requires constant # of steps. General case:

@ constant times n steps for DPartition Conclusion: Deterministic Quicksort uses @(n?) to sort an array of
@ maximum of all possible subarray sizes for the recursive calls length nn in the worst case.

Application: This recurrence can be used to prove that T(n) € O(n?)
using induction on k.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 19 / 25 Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 20 / 25

Analysis

Average-Case Analysis of Deterministic Quicksort

Consider an application of this algorithm when the input is an array A with
n distinct entries

Consider a binary search tree T storing the same values, with
@ the “partition” element at the root

o the left subtree formed by considering the application of the algorithm
to the left subarray

@ the right subtree formed by considering the application of the
algorithm to the right subarray

Useful Property: The number of steps used by the algorithm is at most
cn(height(T) + 1)

for some positive constant ¢

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 21 /25

Analysis

Analysis

Average-Case Analysis of Deterministic Quicksort

Assumption for Analysis: Entries of A are distinct and all n! relative
orderings of these inputs are equally likely

Useful Property: The corresponding binary search trees T are generated
with the probability distribution discussed in the “Average Case Analysis of
Binary Search Trees.”

Bounds on expected height of trees from those notes can now be applied.

Conclusion: The expected cost of Quicksort is in O(nlog n) if the above
assumption for analysis is valid.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 22 /25

Analysis

Analysis of Randomized Quicksort

¢

The previous analysis can be modified to establish that the “worst-case
expected cost” of Randomized Quicksort to sort an array with distinct
entries is in O(nlog n) as well.

Note: it is possible to obtain a worst-case running time of ©(nlog n)

o careful (but deterministic) selection of the pivot (see Introduction to
Algorithms, Chapter 9.3)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 23 /25

An Annoying Problem

An Annoying Problem: Both versions of Quicksort, given above, use
©(n?) operations to “sort” an array of length n if the array contains n
copies of the same value!

The different version of Quicksort found in the textbook has the same
problem!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 24 /25

References

References

References:

@ Cormen, Leiserson, Rivest and Stein
Introduction to Algorithms, Second Edition

Chapter 7 includes more details, including a complete analysis of the
version of Quicksort presented here

@ Textbook, Section 11.2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 25 /25

	Introduction
	Partitioning
	Deterministic Partitioning
	Randomized Partitioning

	Quicksort
	Deterministic Quicksort
	Randomized Quicksort

	Analysis
	References

