Outline

Computer Science 331

Quicksort

Mike Jacobson

Department of Computer Science University of Calgary

Lecture \#27IntroductionPartitioning

- Deterministic Partitioning
- Randomized Partitioning
(3) Quicksort
- Deterministic Quicksort
- Randomized QuicksortAnalysisReferences
Introduction

Quicksort:

- A recursive "Divide and Conquer" sorting algorithm
- A simple deterministic version uses
- $\Theta\left(n^{2}\right)$ operations to sort an array of size n in the worst case
- $\Theta(n \log n)$ operations on average, assuming all relative orderings of the (distinct) input are equally likely
- The expected number of operations used by a randomized version is in $O(n \log n)$ for any input array of size n
(1) Choose an element x and reorder the array as follows:
- x is in the correct spot if the array was sorted
- elements $<x$ are to the left of x in the array
- elements $>x$ are to the right of x in the array
(2) Recursively sort subarray of elements to the left of x
(3) Recursively sort subarray of elements to the right of x

Step 1 is the key to this method being efficient. Issues:

- speed (can be done in time $\Theta(n)$)
- position of x - want the final position of x to be the middle, so the recursive calls are on arrays of size close to half as long as the original

Partitioning

Deterministic Partitioning

This is the process that will be used to carry out step 1 .

Precondition:

- p and r are integers such that $0 \leq \mathrm{p} \leq \mathrm{r}<\mathrm{A}$. length

Postcondition:

- Value returned is an integer q such that $p \leq q \leq r$
- $\mathrm{A}[\mathrm{h}] \leq \mathrm{A}[\mathrm{q}]$ for every integer h such that $\mathrm{p} \leq \mathrm{h} \leq \mathrm{q}-1$
- $\mathrm{A}[\mathrm{h}]>\mathrm{A}$ [q] for every integer h such that $\mathrm{q}+1 \leq \mathrm{h} \leq \mathrm{r}$
- If h is an integer such that $0 \leq \mathrm{h}<\mathrm{p}$ or such that $\mathrm{r}+1 \leq \mathrm{h}<\mathrm{A}$. length then $\mathrm{A}[\mathrm{h}]$ has not been changed
- The entries of A have been reordered but are otherwise unchanged

Idea:

- Pivot element used is the last element in the part of the array being processed. Other versions of this algorithm use the first element instead.
- Sweep from left to right over the array, exchanging elements as needed, so that values less than or equal to the pivot element are all located before values that are greater than the pivot element, in the part of the array that has been processed
Pseudocode Partitioning Deterministic Partitioning

```
int DPartition(int [] A, int p, int r)
```

int DPartition(int [] A, int p, int r)
$\mathrm{x}=\mathrm{A}[\mathrm{r}]$
$\mathrm{x}=\mathrm{A}[\mathrm{r}]$
$\mathrm{i}=\mathrm{p}-1$
$\mathrm{i}=\mathrm{p}-1$
$j=p$
$j=p$
while $\mathrm{j}<\mathrm{r}$ do
while $\mathrm{j}<\mathrm{r}$ do
if $\mathrm{A}[\mathrm{j}] \leq \mathrm{x}$ then
if $\mathrm{A}[\mathrm{j}] \leq \mathrm{x}$ then
$\mathrm{i}=\mathrm{i}+1$
$\mathrm{i}=\mathrm{i}+1$
Swap: $\operatorname{tmp}=\mathrm{A}[\mathrm{i}] ; \mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{j}] ; \mathrm{A}[\mathrm{j}]=\mathrm{tmp}$
Swap: $\operatorname{tmp}=\mathrm{A}[\mathrm{i}] ; \mathrm{A}[\mathrm{i}]=\mathrm{A}[\mathrm{j}] ; \mathrm{A}[\mathrm{j}]=\mathrm{tmp}$
end if
end if
$j=j+1$
$j=j+1$
end while
end while
Swap: $\operatorname{tmp}=A[i+1] ; \mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{r}] ; \mathrm{A}[\mathrm{r}]=\mathrm{tmp}$
Swap: $\operatorname{tmp}=A[i+1] ; \mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{r}] ; \mathrm{A}[\mathrm{r}]=\mathrm{tmp}$
return i+1

```
    return i+1
```


Example (cont.)

$j=5: A[j]=4<5$; increment i and swap $A[4] \& A[5]$

$$
\left. \mathrm{\cdots} \cdot \right\rvert\, \begin{array}{ll}
10 & 4 \\
\hline
\end{array}
$$

$j=6: A[j]=1<5$; increment i and swap $A[5] \& A[6]$

$$
\left.\right)
$$

$j=7$: no change

$$
\begin{array}{ll|l|l|l|l|l|l}
& \cdots & 2 & 4 & 1 & 6 & 7 & 3 \\
\hline
\end{array}
$$

Loop Invariant

Suppose p and r are integers such that $0 \leq p \leq r<\operatorname{length}(A)$.
The the following properties are satisfied at the beginning of each execution of the body of the while-loop:
(1) j is an integer such that $p \leq j<r$.
(2) i is an integer such that $p-1 \leq i \leq j-1$.
(0) The following hold for each integer ℓ such that $\mathrm{p} \leq \ell \leq \mathrm{r}$:

- if $\mathrm{p} \leq \ell \leq i$ then $\mathrm{A}[\ell] \leq \mathrm{x}$,
- if $\mathrm{i}+1 \leq \ell \leq \mathrm{j}-1$ then $\mathrm{A}[\ell]>\mathrm{x}$
- if $\ell=\mathrm{r}$ then $\mathrm{A}[\ell]=\mathrm{x}$.
(- A h$]$ has been unchanged for each integer h such that $0 \leq \mathrm{h}<\mathrm{p}$ or $\mathrm{r}<\mathrm{h}<\mathrm{A}$. length.
(0) Entries of A are reordered but otherwise unchanged

Example (cont.)

$j=8: A[j]=3<5$; increment i and swap $A[6] \& A[8]$

\[

\]

$j=9: A[j]=0<5$; increment i and swap $A[7] \& A[9]$

\[

\]

$$
j=10: \operatorname{swap} A[i+1]=A[8] \& A[10]
$$

\[

\]

Suppose again that p and r are integers such that $0 \leq \mathrm{p} \leq \mathrm{r}<\mathrm{A}$. length. Then the following properties are satisfied at the end of each execution of the body of the while loop:

- j is an integer such that $p \leq j \leq r$
- Parts 2-5 of the loop invariant hold once again

The following properties hold on termination of this loop:

- $\mathrm{j}=\mathrm{r}$
- Parts 2-5 of the loop invariant are satisfied

Partial Correctness

Termination and Efficiency

Once again, suppose that p and r are integers such that $0 \leq \mathrm{p} \leq \mathrm{r}<\mathrm{A}$. length.
If the program halts then the following conditions are satisfied on termination, if q is the value that is returned:
(1) q is an integer such that $\mathrm{p} \leq \mathrm{q} \leq \mathrm{r}$.
(2) The following relationships hold for each integer ℓ such that $\mathrm{p} \leq \ell \leq \mathrm{r}$:

- if $\mathrm{p} \leq \ell<\mathrm{q}$ then $\mathrm{A}[\ell] \leq \mathrm{A}[\mathrm{q}]$,
- if $\mathrm{q}<\ell \leq \mathrm{r}$ then $\mathrm{A}[\ell]>\mathrm{A}[\mathrm{q}]$.
(0) If h is an integer such that $0 \leq \mathrm{h}<\mathrm{p}$ or $\mathrm{r}<\mathrm{h}<\mathrm{A}$. length then $\mathrm{A}[\mathrm{h}]$ has not been changed.
(1) Entries of A are reordered but otherwise unchanged

Randomized Partitioning

Idea: Choose the pivot element randomly from the set of values in the part of the array to be processed. Then proceed as before.

```
int RPartition(int [] A, int p, int r)
```

Choose i randomly and uniformly from the set of integers between p and r (inclusive).
Swap: $t m p=A[i] ; A[i]=A[r] ; A[r]=t m p$
return DPartition (A, p, r)

Randomized Partitioning: Analysis

Loop Variant: $r-j$
Justification: decreases, if ≤ 0 loop terminates $(j=r)$

Application:

- The initial value of the loop variant is $r-p$

Therefore the loop body is executed exactly $r-p$ times.

- Each execution of the loop body requires (at most) a constant number of operations.
Therefore the cost to execute the loop is in $O(r-p)$.
- Since the rest of the program only uses a constant number of operations, it is clear that the program terminates and that it uses $O(r-p)$ operations in the worst case.

Suppose p and r are integers such that $0 \leq \mathrm{p} \leq \mathrm{r}<\mathrm{A}$. length and that RPartition is called with inputs A, p and r :

- This algorithm terminates using $O(\mathrm{r}-\mathrm{p})$ operations.
- Let q be the value that is returned on termination. Then the following conditions hold on termination:
- q is an integer such that $\mathrm{p} \leq \mathrm{q} \leq \mathrm{r}$.
- If $\ell \in \mathbb{Z}$ and $\mathrm{p} \leq \ell<\mathrm{q}$ then $\mathrm{A}[\bar{\ell}] \leq \mathrm{A}[\mathrm{q}]$.
- If $\ell \in \mathbb{Z}$ and $\mathrm{q}<\ell \leq \mathrm{r}$ then $\mathrm{A}[\ell]>\mathrm{A}$ [q].

If the entries of A are distinct then $\mathrm{q}=\mathrm{i}$ with probability $1 /(r-p+1)$ for each integer i between p and r (inclusive).

- If h is an integer such that $0 \leq \mathrm{h}<\mathrm{p}$ or $\mathrm{r}<\mathrm{h}<\mathrm{A}$. length then $\mathrm{A}[\mathrm{h}]$ has not been changed.
- Entries of A are reordered but otherwise unchanged

Deterministic Quicksort

Randomized Quicksort

Idea: Partition the array, then recursively sort the pieces before and after the pivot element.

```
Call quickSort(A, 0, A.length-1) to sort A
void quickSort(int [] A, int p, int r)
    if p<r then
        q= DPartition(A, p,r)
        quickSort(A, p, q-1)
        quickSort(A,q+1,r)
    end if
```


Worst-Case Analysis of Deterministic Quicksort

Theorem 1

Let $T(n)$ be the number of steps used by QuickSort to sort an array of length n in the worst case. Then

$$
T(n) \leq \begin{cases}c_{0} & \text { if } n \leq 1 \\ c_{1} n+\max _{0 \leq k \leq n-1}(T(k)+T(n-1-k)) & \text { if } n \geq 2\end{cases}
$$

Justification: Base case requires constant \# of steps. General case:

- constant times n steps for DPartition
- maximum of all possible subarray sizes for the recursive calls

Application: This recurrence can be used to prove that $T(n) \in O\left(n^{2}\right)$ using induction on k.

Idea: Same as deterministic Quicksort, except that randomized partitioning is used.

Call RQuickSort(A, 0, A. length-1) to sort A :

```
void RQuickSort(int [] A, int p,int r)
```

 if \(p<r\) then
 \(\mathrm{q}=\mathbf{R P a r t i t i o n}(\mathrm{A}, \mathrm{p}, \mathrm{r})\)
 RQuickSort(A, p, q-1)
 RQuickSort(A, \(q+1, r)\)
 end if

Worst-Case Analysis of Deterministic Quicksort

Theorem 2
If Deterministic Quicksort is applied to an array of length n whose entries are already sorted then this algorithm uses $\Omega\left(n^{2}\right)$ steps.

Method of Proof: Induction on n, once again.
Conclusion: Deterministic Quicksort uses $\Theta\left(n^{2}\right)$ to sort an array of length n in the worst case

Average-Case Analysis of Deterministic Quicksort

Consider an application of this algorithm when the input is an array A with n distinct entries

Consider a binary search tree T storing the same values, with

- the "partition" element at the root
- the left subtree formed by considering the application of the algorithm to the left subarray
- the right subtree formed by considering the application of the algorithm to the right subarray

Useful Property: The number of steps used by the algorithm is at most

$$
c n(\operatorname{height}(T)+1)
$$

for some positive constant c

The previous analysis can be modified to establish that the "worst-case expected cost" of Randomized Quicksort to sort an array with distinct entries is in $O(n \log n)$ as well.

Note: it is possible to obtain a worst-case running time of $\Theta(n \log n)$

- careful (but deterministic) selection of the pivot (see Introduction to Algorithms, Chapter 9.3)

Average-Case Analysis of Deterministic Quicksort

Assumption for Analysis: Entries of A are distinct and all n ! relative orderings of these inputs are equally likely

Useful Property: The corresponding binary search trees T are generated with the probability distribution discussed in the "Average Case Analysis of Binary Search Trees."

Bounds on expected height of trees from those notes can now be applied.
Conclusion: The expected cost of Quicksort is in $O(n \log n)$ if the above assumption for analysis is valid.

```
An Annoying Problem
```

An Annoying Problem: Both versions of Quicksort, given above, use $\Theta\left(n^{2}\right)$ operations to "sort" an array of length n if the array contains n copies of the same value!

The different version of Quicksort found in the textbook has the same problem!

References:

- Cormen, Leiserson, Rivest and Stein Introduction to Algorithms, Second Edition

Chapter 7 includes more details, including a complete analysis of the version of Quicksort presented here

- Textbook, Section 11.2

