
Computer Science 331
Quicksort

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #27

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 1 / 25

Outline

1 Introduction

2 Partitioning
Deterministic Partitioning
Randomized Partitioning

3 Quicksort
Deterministic Quicksort
Randomized Quicksort

4 Analysis

5 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 2 / 25

Introduction

Introduction

Quicksort:

A recursive \Divide and Conquer" sorting algorithm

A simple deterministic version uses

�(n2) operations to sort an array of size n in the worst case
�(n log n) operations on average, assuming all relative orderings of the
(distinct) input are equally likely

The expected number of operations used by a randomized version is
in O(n log n) for any input array of size n

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 3 / 25

Introduction

Idea

1 Choose an element x and reorder the array as follows:

x is in the correct spot if the array was sorted
elements < x are to the left of x in the array
elements > x are to the right of x in the array

2 Recursively sort subarray of elements to the left of x

3 Recursively sort subarray of elements to the right of x

Step 1 is the key to this method being e�cient. Issues:

speed (can be done in time �(n))

position of x | want the �nal position of x to be the middle, so the
recursive calls are on arrays of size close to half as long as the original

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 4 / 25



Partitioning

Partitioning

This is the process that will be used to carry out step 1.

Precondition:

p and r are integers such that 0 � p � r < A.length

Postcondition:

Value returned is an integer q such that p � q � r

A[h] � A[q] for every integer h such that p � h � q� 1

A[h] > A[q] for every integer h such that q+ 1 � h � r

If h is an integer such that 0 � h < p or such that
r+ 1 � h < A.length then A[h] has not been changed

The entries of A have been reordered but are otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 5 / 25

Partitioning Deterministic Partitioning

Deterministic Partitioning

Idea:

Pivot element used is the last element in the part of the array being
processed. Other versions of this algorithm use the �rst element
instead.

Sweep from left to right over the array, exchanging elements as
needed, so that values less than or equal to the pivot element are all
located before values that are greater than the pivot element, in the
part of the array that has been processed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 6 / 25

Partitioning Deterministic Partitioning

Pseudocode

int DPartition(int [] A, int p, int r)

x = A[r]
i = p-1
j = p
while j < r do

if A[j] � x then

i = i+ 1
Swap: tmp = A[i]; A[i] = A[j]; A[j] = tmp

end if

j = j+ 1
end while

Swap: tmp = A[i+1]; A[i+1] = A[r]; A[r] = tmp
return i+ 1

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 7 / 25

Partitioning Deterministic Partitioning

Example

Consider the execution of DPartition(A, 3, 10) for A as follows:

3 4 5 6 7 8 9 10

� � � 2 6 4 1 7 3 0 5 � � �

Using x = A[10] = 5 as the pivot. Initially i = 2; j = 3:

j = 3 : A[j ] = 2 < 5; increment i and swap A[3] & A[3]

i = 3; j = 3
3 4 5 6 7 8 9 10

� � � 2 6 4 1 7 3 0 5 � � �

j = 4 : no change

i = 3; j = 4
3 4 5 6 7 8 9 10

� � � 2 6 4 1 7 3 0 5 � � �

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 8 / 25



Partitioning Deterministic Partitioning

Example (cont.)

j = 5 : A[j ] = 4 < 5; increment i and swap A[4] & A[5]

i = 4; j = 5
3 4 5 6 7 8 9 10

� � � 2 4 6 1 7 3 0 5 � � �

j = 6 : A[j ] = 1 < 5; increment i and swap A[5] & A[6]

i = 5; j = 6
3 4 5 6 7 8 9 10

� � � 2 4 1 6 7 3 0 5 � � �

j = 7 : no change

i = 5; j = 7
3 4 5 6 7 8 9 10

� � � 2 4 1 6 7 3 0 5 � � �

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 9 / 25

Partitioning Deterministic Partitioning

Example (cont.)

j = 8 : A[j ] = 3 < 5; increment i and swap A[6] & A[8]

i = 6; j = 8
3 4 5 6 7 8 9 10

� � � 2 4 1 3 7 6 0 5 � � �

j = 9 : A[j ] = 0 < 5; increment i and swap A[7] & A[9]

i = 7; j = 9
3 4 5 6 7 8 9 10

� � � 2 4 1 3 0 6 7 5 � � �

j = 10 : swap A[i + 1] = A[8] & A[10]

i = 7; j = 10
3 4 5 6 7 8 9 10

� � � 2 4 1 3 0 5 7 6 � � �

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 10 / 25

Partitioning Deterministic Partitioning

Loop Invariant

Suppose p and r are integers such that 0 � p � r < length(A).

The the following properties are satis�ed at the beginning of each
execution of the body of the while-loop:

1 j is an integer such that p � j < r:

2 i is an integer such that p� 1 � i � j� 1:
3 The following hold for each integer ` such that p � ` � r:

if p � ` � i then A[`] � x;
if i+ 1 � ` � j� 1 then A[`] > x;
if ` = r then A[`] = x:

4 A[h] has been unchanged for each integer h such that 0 � h < p or
r < h < A.length:

5 Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 11 / 25

Partitioning Deterministic Partitioning

Application of the Loop Invariant

Suppose again that p and r are integers such that
0 � p � r < A.length. Then the following properties are satis�ed at the
end of each execution of the body of the while loop:

j is an integer such that p � j � r

Parts 2{5 of the loop invariant hold once again

The following properties hold on termination of this loop:

j = r

Parts 2{5 of the loop invariant are satis�ed

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 12 / 25



Partitioning Deterministic Partitioning

Partial Correctness

Once again, suppose that p and r are integers such that
0 � p � r < A.length:

If the program halts then the following conditions are satis�ed on
termination, if q is the value that is returned:

1 q is an integer such that p � q � r:
2 The following relationships hold for each integer ` such that
p � ` � r :

if p � ` < q then A[`] � A[q];
if q < ` � r then A[`] > A[q]:

3 If h is an integer such that 0 � h < p or r < h < A.length then
A[h] has not been changed.

4 Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 13 / 25

Partitioning Deterministic Partitioning

Termination and E�ciency

Loop Variant: r � j

Justi�cation: decreases, if � 0 loop terminates (j = r)

Application:

The initial value of the loop variant is r � p

Therefore the loop body is executed exactly r � p times.

Each execution of the loop body requires (at most) a constant
number of operations.

Therefore the cost to execute the loop is in O(r � p).

Since the rest of the program only uses a constant number of
operations, it is clear that the program terminates and that it uses
O(r � p) operations in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 14 / 25

Partitioning Randomized Partitioning

Randomized Partitioning

Idea: Choose the pivot element randomly from the set of values in the
part of the array to be processed. Then proceed as before.

int RPartition(int [] A, int p, int r)

Choose i randomly and uniformly from the set of integers between p

and r (inclusive).
Swap: tmp = A[i ]; A[i ] = A[r ]; A[r ] = tmp

return DPartition(A, p, r)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 15 / 25

Partitioning Randomized Partitioning

Randomized Partitioning: Analysis

Suppose p and r are integers such that 0 � p � r < A.length and that
RPartition is called with inputs A, p and r:

This algorithm terminates using O(r� p) operations.

Let q be the value that is returned on termination. Then the
following conditions hold on termination:

q is an integer such that p � q � r:
If ` 2 Z and p � ` < q then A[`] � A[q]:
If ` 2 Z and q < ` � r then A[`] > A[q]:

If the entries of A are distinct then q = i with probability
1=(r� p+ 1) for each integer i between p and r (inclusive).

If h is an integer such that 0 � h < p or r < h < A.length then
A[h] has not been changed.

Entries of A are reordered but otherwise unchanged

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 16 / 25



Quicksort Deterministic Quicksort

Deterministic Quicksort

Idea: Partition the array, then recursively sort the pieces before and after
the pivot element.

Call quickSort(A, 0, A.length-1) to sort A:

void quickSort(int [] A, int p, int r)

if p < r then

q = DPartition(A, p, r)
quickSort(A, p, q-1)
quickSort(A, q+1, r)

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 17 / 25

Quicksort Randomized Quicksort

Randomized Quicksort

Idea: Same as deterministic Quicksort, except that randomized
partitioning is used.

Call RQuickSort(A, 0, A.length-1) to sort A:

void RQuickSort(int [] A, int p, int r)

if p < r then

q = RPartition(A, p, r)
RQuickSort(A, p, q-1)
RQuickSort(A, q+1, r)

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 18 / 25

Analysis

Worst-Case Analysis of Deterministic Quicksort

Theorem 1

Let T (n) be the number of steps used by QuickSort to sort an array of

length n in the worst case. Then

T (n) �

8<
:
c0 if n � 1,

c1n + max
0�k�n�1

(T (k) + T (n � 1� k)) if n � 2.

Justi�cation: Base case requires constant # of steps. General case:

constant times n steps for DPartition

maximum of all possible subarray sizes for the recursive calls

Application: This recurrence can be used to prove that T (n) 2 O(n2)
using induction on k .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 19 / 25

Analysis

Worst-Case Analysis of Deterministic Quicksort

Theorem 2

If Deterministic Quicksort is applied to an array of length n whose entries

are already sorted then this algorithm uses 
(n2) steps.

Method of Proof: Induction on n, once again.

Conclusion: Deterministic Quicksort uses �(n2) to sort an array of
length n in the worst case.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 20 / 25



Analysis

Average-Case Analysis of Deterministic Quicksort

Consider an application of this algorithm when the input is an array A with
n distinct entries

Consider a binary search tree T storing the same values, with

the \partition" element at the root

the left subtree formed by considering the application of the algorithm
to the left subarray

the right subtree formed by considering the application of the
algorithm to the right subarray

Useful Property: The number of steps used by the algorithm is at most

cn(height(T ) + 1)

for some positive constant c

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 21 / 25

Analysis

Average-Case Analysis of Deterministic Quicksort

Assumption for Analysis: Entries of A are distinct and all n! relative
orderings of these inputs are equally likely

Useful Property: The corresponding binary search trees T are generated
with the probability distribution discussed in the \Average Case Analysis of
Binary Search Trees."

Bounds on expected height of trees from those notes can now be applied.

Conclusion: The expected cost of Quicksort is in O(n log n) if the above
assumption for analysis is valid.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 22 / 25

Analysis

Analysis of Randomized Quicksort

The previous analysis can be modi�ed to establish that the \worst-case
expected cost" of Randomized Quicksort to sort an array with distinct

entries is in O(n log n) as well.

Note: it is possible to obtain a worst-case running time of �(n log n)

careful (but deterministic) selection of the pivot (see Introduction to

Algorithms, Chapter 9.3)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 23 / 25

Analysis

An Annoying Problem

An Annoying Problem: Both versions of Quicksort, given above, use
�(n2) operations to \sort" an array of length n if the array contains n
copies of the same value!

The di�erent version of Quicksort found in the textbook has the same
problem!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 24 / 25



References

References

References:

Cormen, Leiserson, Rivest and Stein
Introduction to Algorithms, Second Edition

Chapter 7 includes more details, including a complete analysis of the
version of Quicksort presented here

Textbook, Section 11.2

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #27 25 / 25


	Introduction
	Partitioning
	Deterministic Partitioning
	Randomized Partitioning

	Quicksort
	Deterministic Quicksort
	Randomized Quicksort

	Analysis
	References

