

Trees, Spanning Trees and Subgraphs

Introduction

Goals for Today:

- We will introduce a particular type of a graph a *(free) tree* that will be used in definitions of graph problems, and graph algorithms, throughout the rest of this course
- Additional important definitions and graph properties will also be introduced

References:

• Introduction to Algorithms, Appendix B4 and B5

Paths and Cycles

Paths and Simple Paths

Definition: A *path* in an undirected graph G = (V, E) is a sequence of zero or more edges in G

$$(v_0, v_1), (v_1, v_2), (v_2, v_3), \dots, (v_{k-1}, v_k)$$

where the second vertex (shown) in each edge is the first vertex (shown) in the next edge.

The path shown above is a path from v_0 (the first vertex in the first edge) to v_k (the second vertex in the final edge).

This is a simple path if v_0, v_1, \ldots, v_k are distinct.

Paths and Cycles

Paths and Simple Paths

Cycles and Simple Cycles

Definition: A cycle (in an undirected graph G = (V, E) is a path with length greater than zero from some vertex **to itself**:

Definition: The *length* of a path is the length of the *sequence* of edges in it.

Thus the path shown in the previous slide has length k.

Definition: An undirected graph G = (V, E) is a *connected* graph if there is a path from u to v, for *every* pair of vertices $u, v \in V$.

Computer Science 33

Trees Definition

A cycle $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k), (v_k, v_0)$ is a simple cycle if v_0, v_1, \dots, v_k are distinct.

A graph G = (V, E) is *acyclic* if it does not have any cycles.

Mike Jacobson (University of Calgary) Computer Science 331

Paths and Cycles

Problem: There is No Completely Standard Terminology!

Problem with Terminology

- Different references tend to use these terms differently!
- For example, in some textbooks, a simple cycle is considered to be a kind of *simple path*, and the definition of "cycle" given is the same as the definition of *simple cycle* given above
- Other references only call something a "path" if it is a *simple path*, as defined above; they only call something a "cycle" if it is a *simple cycle*; and they use the term *walk* to refer to the more general kind of "path" that is defined in these notes

Consequence: You should check the definitions of these terms in any other references that you use!

Trees

Mike Jacobson (University of Calgary

Definition: A *free tree* is a connected acyclic graph.

Frequently we just call a free tree a "tree."

• If we identify one vertex as the "root," then the result is the kind of "rooted tree" we have seen before.

Lecture #29

Lecture #29

We will present various properties and relations between |V| and |E| that

Existence of Vertex With Degree At Most 1

Lemma 1

If G = (V, E) is a graph such that $|V| \ge 2$ and |E| < |V| then there exists a vertex $v \in V$ whose degree $d(v) \le 1$.

Trees Properties

Proof (by contradiction).

For any graph G, $\sum_{v \in V} d(v) = 2|E|$ (each edge counted twice)

If $d(v) \ge 2$ for every $v \in V$, then

$$2|E| = \sum_{v \in V} d(v) \ge \sum_{v \in V} 2 = 2|V|$$

so that $|E| \ge |V|$ — contradiction.

Thus, at least one vertex has degree at most one.

```
Mike Jacobson (University of Calgary)
```

Lecture #29

Mike Jacobson (University of Calgary)

characterize trees. Examples:

• If G is a tree then it has |V| - 1 edges

• An acyclic graph with |V| - 1 edges is a tree

• A connected graph with |V| - 1 edges is a tree

Reference: Introduction to Algorithms, Appendix B.5

Computer Science 331

Trees Properties

Connected Graph has at Least |V| - 1 Edges

Lemma 2

If G = (V, E) is connected then $|E| \ge |V| - 1$.

Proof (of contrapositive by induction on V).

Base case (|V| = 0, 1): G is connected, and $|E| = 0 \ge |V| - 1$

Contrapositive: If |E| < |V| - 1 then G is not connected

Suppose $|V| \ge 2$ and |E| < |V| - 1. By Lemma 1, $\exists v$ with $d(v) \le 1$.

- If d(v) = 0: G is not connected (v has no edges)
- 2 If d(v) = 1: let G' = (V', E') be obtained by removing v and its one edge (so |E'| = |E| 1 and |V'| = |V| 1).
 - |E'| < |V'| 1, and by the induction hypothesis G' is not connected.
 - *G* is also not connected (adding vertex and one incident edge).

Lecture #29

Thus, G includes a cycle.

Trees Properties

Computer Science 33

Property of Cyclic Graphs

Lemma 3

If G = (V, E) and each vertex $v \in V$ has degree at least two then G includes a cycle.

Proof.

Pick $v_1 \in V$, follow edges in E to reach v_1, v_2, \ldots until either

1 some vertex appears for the second time, or

Il edges incident to the current vertex have been used Notice that:

• one of these cases must arise (because |V| and |E| are finite)

• if every $v \in V$ has $d(v) \ge 2$, then Case 1 occurs before Case 2

Computer Science 331

Trees Properties

Acyclic Graph has at Most |V| - 1 Edges

Lemma 4

If G = (V, E) is acyclic then $|E| \leq |V| - 1$.

Proof (of contrapositive by induction on |V|).

- Contrapositive: If |E| > |V| 1, then G has a cycle
- Base case (|V| = 1): if |E| > |V| 1 = 0, then v has a loop (cycle)
- Inductive step: Suppose that $|V| \ge 2$ and |E| > |V| 1.
- If $\exists v \in V$ with d(v) < 2: G' = (V', E') obtained by removing v and its edge (if d(v) = 1) has |E'| > |V'| 1 and has a cycle by induction hypothesis (thus, so does G)
- **2** Otherwise $(d(v) \ge 2$ for all $v \in V$): result follows by Lemma 3.

Computer Science 331

Trees Properties

Trees Properties

A Tree has |V| - 1 Edges

Corollary 5

If G = (V, E) is a tree then |E| = |V| - 1.

Trees Properties

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #29 14 /

Acyclic Graph with |V| - 1 Edges is a Tree

Lemma 6

Mike Jacobson (University of Calgary)

If G = (V, E) is acyclic and |E| = |V| - 1 then G is a tree.

Connected Graph with |V|-1 Edges is a Tree

Lemma 7

If G = (V, E) is connected and |E| = |V| - 1 then G is a tree.

Proof (induction on $ V $).	

Lecture #29

13 / 25

Spanning Trees

Spanning Trees

Example

Suppose G = (V, E) is as follows.

• $\widehat{V} = V$ (so that \widehat{G} includes all the vertices in G)

•
$$\widehat{E} \subseteq E$$

• \widehat{G} is a tree.

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #29 17 / 25	N
	Spanning Trees		
Example Tree 1			

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #29 18 / 25
	с : т	
	Spanning Trees	
Example Tree 2		

Is the following graph $G_1 = (V_1, E_1)$ a spanning tree of G?

Is the following graph $G_2 = (V_2, E_2)$ is also a spanning tree of G?

Example Tree 3

Is the following graph $G_3 = (V_3, E_3)$ is also a spanning tree of G?

Spanning Trees

- Suppose G = (V, E) is a graph.
 - $\widehat{G} = (\widehat{V}, \widehat{E})$ is a *subgraph* of G if \widehat{G} is a graph such that $\widehat{V} \subseteq V$ and $\widehat{E} \subseteq E$
 - $\widetilde{G} = (\widetilde{V}, \widetilde{E})$ is an *induced subgraph* of G if
 - \widetilde{G} is a subgraph of G and, furthermore
 - $\widetilde{E} = \left\{ (u, v) \in E \mid u, v \in \widetilde{V} \right\}$, that is, \widetilde{G} includes *all* the edges from *G* that it possibly could

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #29	21 / 25	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #29	22 / 25
Predecessor Subgraphs Subgraphs and Induced Subgraphs				Predecessor Subgraphs Predecessor Subgraphs			
Example				Predecessor Subgra	phs		

 G_2 is an *induced subgraph* of G_1 .

 G_3 is a *subgraph* of G_1 , but G_3 is **not** an *induced subgraph* of G_1 .

Let G = (V, E) and let $s \in V$. Construct a subset V_p of V, a subset E_p of E, and a function $\pi : V \to V \cup \{NIL\}$ as follows.

- Initially, $V_p = \{s\}$, $E_p = \emptyset$, and $\pi(v) = \text{NIL}$ for every vertex $v \in V$.
- The following step is performed, between 0 and |V| 1 times:
 - Pick some vertex u from the set V_p .
 - Pick some vertex $v \in V$ such that $v \notin V_p$ and $(u, v) \in E$. (The process must end if this is not possible to do.)
 - Set $\pi(v)$ to be u, add the vertex v to the set V_p , and add the edge $(u, v) = (\pi(v), v)$ to E_p

Note that $V_p \subseteq V$, $E_p \subseteq E$, and each edge in E_p connects pairs of vertices that each belongs to V_p each time the above (interior) step is performed — so that $G_p = (V_p, E_p)$ is always a *subgraph* of G.

Predecessor Subgraphs Predecessor Subgraphs

Subgraph Property

The graph $G_p = (V_p, E_p)$ that has been constructed is called a *predecessor* subgraph.

Claim:

Let $G_p = (V_p, E_p)$ be a predecessor subgraph of an undirected graph G.

- a) G_p is a subgraph of G and G_p is a tree.
- b) If $V_p = V$ then G_p is a spanning tree of G.

Proof.

Part (a) is true because $|E_p| = |V_p| - 1$, by the construction of V_p and of E_p , and G_p is always connected, so G_p is a tree, as well as a subgraph of G.

Part (b) now follows by the fact that E_p is a subset of E, so that G_p is a subgraph of G, and by the fact that $V_p = V$.

Mike Jacobson (University of Calgary) Computer Science 331

Lecture #29

25 / 25