## Outline

## Computer Science 331 <br> Trees, Spanning Trees, and Subgraphs

Mike Jacobson

Department of Computer Science
University of Calgary
Lecture \#29

## Goals for Today:

- We will introduce a particular type of a graph - a (free) tree - that will be used in definitions of graph problems, and graph algorithms, throughout the rest of this course
- Additional important definitions and graph properties will also be introduced


## References:

- Introduction to Algorithms, Appendix B4 and B5IntroductionPaths and Cycles
(3) Trees
- Definition
- PropertiesSpanning TreesPredecessor Subgraphs
- Subgraphs and Induced Subgraphs
- Predecessor Subgraphs


## Paths and Simple Paths

Definition: A path in an undirected graph $G=(V, E)$ is a sequence of zero or more edges in $G$

$$
\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{k-1}, v_{k}\right)
$$

where the second vertex (shown) in each edge is the first vertex (shown) in the next edge.


The path shown above is a path from $\mathrm{v}_{0}$ (the first vertex in the first edge) to $\mathrm{v}_{\mathrm{k}}$ (the second vertex in the final edge).
This is a simple path if $v_{0}, v_{1}, \ldots, v_{k}$ are distinct.

Definition: A cycle (in an undirected graph $G=(V, E)$ is a path with length greater than zero from some vertex to itself:


> A cycle $\left(v_{0}, v_{1}\right),\left(v_{1}, v_{2}\right), \ldots,\left(v_{k-1}, v_{k}\right),\left(v_{k}, v_{0}\right)$ is a simple cycle if $v_{0}, v_{1}, \ldots, v_{k}$ are distinct.
> A graph $G=(V, E)$ is acyclic if it does not have any cycles.

## Problem with Terminology

- Different references tend to use these terms differently!
- For example, in some textbooks, a simple cycle is considered to be a kind of simple path, and the definition of "cycle" given is the same as the definition of simple cycle given above
- Other references only call something a "path" if it is a simple path, as defined above; they only call something a "cycle" if it is a simple cycle; and they use the term walk to refer to the more general kind of "path" that is defined in these notes

Consequence: You should check the definitions of these terms in any other references that you use!

Definition: A free tree is a connected acyclic graph.


Frequently we just call a free tree a "tree."

- If we identify one vertex as the "root," then the result is the kind of "rooted tree" we have seen before.


## Properties

## Lemma 1

If $G=(V, E)$ is a graph such that $|V| \geq 2$ and $|E|<|V|$ then there exists a vertex $v \in V$ whose degree $d(v) \leq 1$.
We will present various properties and relations between $|V|$ and $|E|$ that characterize trees. Examples:

- If $G$ is a tree then it has $|V|-1$ edges
- An acyclic graph with $|V|-1$ edges is a tree
- A connected graph with $|V|-1$ edges is a tree

Reference: Introduction to Algorithms, Appendix B. 5

## Proof (by contradiction)

For any graph $G, \sum_{v \in V} d(v)=2|E|$ (each edge counted twice) If $d(v) \geq 2$ for every $v \in V$, then

$$
2|E|=\sum_{v \in V} d(v) \geq \sum_{v \in V} 2=2|V|
$$

so that $|E| \geq|V|-$ contradiction.
Thus, at least one vertex has degree at most one.
$\begin{array}{llll}\text { Mike Jacobson (University of Calgary) } & \text { Computer Science } 331 & \text { Lecture \#29 } 10 / 25\end{array}$

## Property of Cyclic Graphs

```
Lemma 2
If G}=(V,E)\mathrm{ is connected then }|E|\geq|V|-1
Proof (of contrapositive by induction on V).
Base case ( }|V|=0,1):G\mathrm{ is connected, and }|E|=0\geq|V|-
Contrapositive: If }|E|<|V|-1 then G is not connected
Suppose |V|\geq2 and |E|<|V|-1. By Lemma 1, \existsv with d(v)\leq1.
    (1) If }d(v)=0:G\mathrm{ is not connected ( }v\mathrm{ has no edges)
    (2) If d(v)=1: let G}=(\mp@subsup{V}{}{\prime},\mp@subsup{E}{}{\prime})\mathrm{ be obtained by removing v and its one
        edge (so }|\mp@subsup{E}{}{\prime}|=|E|-1 and |\mp@subsup{V}{}{\prime}|=|V|-1)
            - }|\mp@subsup{E}{}{\prime}|<|\mp@subsup{V}{}{\prime}|-1, and by the induction hypothesis G' is not connected
            - G is also not connected (adding vertex and one incident edge).
```

Acyclic Graph has at Most $|V|-1$ Edges

## Lemma 4

If $G=(V, E)$ is acyclic then $|E| \leq|V|-1$.
Proof (of contrapositive by induction on $|V|$ ).
Contrapositive: If $|E|>|V|-1$, then $G$ has a cycle
Base case $(|V|=1)$ : if $|E|>|V|-1=0$, then $v$ has a loop (cycle)
Inductive step: Suppose that $|V| \geq 2$ and $|E|>|V|-1$.
(1) If $\exists v \in V$ with $d(v)<2: G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ obtained by removing $v$ and its edge (if $d(v)=1$ ) has $\left|E^{\prime}\right|>\left|V^{\prime}\right|-1$ and has a cycle by induction hypothesis (thus, so does $G$ )
(2) Otherwise $(d(v) \geq 2$ for all $v \in V)$ : result follows by Lemma 3 . $\square$

Acyclic Graph with $|V|-1$ Edges is a Tree

## Lemma 6

If $G=(V, E)$ is acyclic and $|E|=|V|-1$ then $G$ is a tree.

## Proof (induction on $|V|$ ).

A Tree has $|V|-1$ Edges
Corollary 5
If $G=(V, E)$ is a tree then $|E|=|V|-1$.

## Proof. <br> of

## Trees Properties

## Lemma 7

If $G=(V, E)$ is connected and $|E|=|V|-1$ then $G$ is a tree.

## Proof (induction on $|V|$ ).

## Trees Properties

Connected Graph with $|V|-1$ Edges is a Tree

## Suppose $G=(V, E)$ is as follows.



If $G=(V, E)$ is a connected undirected graph, then a spanning tree of $G$ is a subgraph $\widehat{G}=(\widehat{V}, \widehat{E})$ of $G$ such that

- $\widehat{V}=V$ (so that $\widehat{G}$ includes all the vertices in $G$ )
- $\widehat{E} \subseteq E$
- $\widehat{G}$ is a tree.


## Example Tree 1

Is the following graph $G_{1}=\left(V_{1}, E_{1}\right)$ a spanning tree of $G$ ?


## Example Tree 3

## Subgraphs and Induced Subgraphs

Is the following graph $G_{3}=\left(V_{3}, E_{3}\right)$ is also a spanning tree of $G$ ?


## Example

$\mathrm{G}_{2}$ is an induced subgraph of $\mathrm{G}_{1}$.
$G_{3}$ is a subgraph of $G_{1}$, but $G_{3}$ is not an induced subgraph of $G_{1}$.


Suppose $G=(V, E)$ is a graph.

- $\widehat{G}=(\widehat{V}, \widehat{E})$ is a subgraph of $G$ if $\widehat{G}$ is a graph such that $\widehat{V} \subseteq V$ and $\widehat{E} \subseteq E$
- $\widetilde{G}=(\widetilde{V}, \widetilde{E})$ is an induced subgraph of $G$ if
- $\widetilde{G}$ is a subgraph of $G$ and, furthermore
- $\widetilde{E}=\{(u, v) \in E \mid u, v \in \widetilde{V}\}$, that is, $\widetilde{G}$ includes all the edges from $G$ that it possibly could

$$
\text { Predecessor Subgraphs }
$$

Predecessor Subgraphs
Predecessor Subgraphs

Let $G=(V, E)$ and let $s \in V$. Construct a subset $V_{p}$ of $V$, a subset $E_{p}$ of $E$, and a function $\pi: V \rightarrow V \cup\{$ NIL $\}$ as follows.

- Initially, $V_{p}=\{s\}, E_{p}=\emptyset$, and $\pi(v)=$ NIL for every vertex $v \in V$.
- The following step is performed, between 0 and $|V|-1$ times:
- Pick some vertex $u$ from the set $V_{p}$.
- Pick some vertex $v \in V$ such that $v \notin V_{p}$ and $(u, v) \in E$. (The process must end if this is not possible to do.)
- Set $\pi(v)$ to be $u$, add the vertex $v$ to the set $V_{p}$, and add the edge $(u, v)=(\pi(v), v)$ to $E_{p}$

Note that $V_{p} \subseteq V, E_{p} \subseteq E$, and each edge in $E_{p}$ connects pairs of vertices that each belongs to $V_{p}$ each time the above (interior) step is performed - so that $G_{p}=\left(V_{p}, E_{p}\right)$ is always a subgraph of $G$.

## Subgraph Property

The graph $G_{p}=\left(V_{p}, E_{p}\right)$ that has been constructed is called a predecessor subgraph.

## Claim:

Let $G_{p}=\left(V_{p}, E_{p}\right)$ be a predecessor subgraph of an undirected graph $G$.
a) $G_{p}$ is a subgraph of $G$ and $G_{p}$ is a tree.
b) If $V_{p}=V$ then $G_{p}$ is a spanning tree of $G$.

## Proof

Part (a) is true because $\left|E_{p}\right|=\left|V_{p}\right|-1$, by the construction of $V_{p}$ and of $E_{p}$, and $G_{p}$ is always connected, so $G_{p}$ is a tree, as well as a subgraph of $G$.
Part (b) now follows by the fact that $E_{p}$ is a subset of $E$, so that $G_{p}$ is a subgraph of $G$, and by the fact that $V_{p}=V$.

