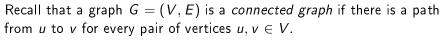


Outline

Connected Components

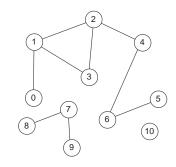
Connected Components: An Example

Suppose G is the following graph



More generally, a connected component of a graph G is an induced subgraph $\widehat{G} = (\widehat{V}, \widehat{E})$ of G such that

- \widehat{G} is a connected graph, and
- \widehat{G} is "maximal:" It is not possible to add any more vertices or edges of G to \widehat{G} in order to produce a larger subgraph of G that is still connected



G has three connected components with vertex sets $\{1,2,3,4,5,6\},$ $\{7,8,9\},$ and $\{10\}.$

Computational Problems

Given an undirected graph G = (V, E),

- Decide whether G is connected (ie, whether it has only *one* connected component, consisting of the entire graph)
- Find (and list) each of the connected components of G

Given an undirected graph G = (V, E) and a vertex $s \in V$,

- Find the connected component of G that contains s
- Find a *spanning tree* for the connected component of *G* that contains *s*

Given an undirected graph G = (V, E),

• Find the graph $\widehat{G} = (V, \widehat{E})$ that includes the same set of vertices Vand whose edges consist of the edges in a set of spanning trees including a spanning tree for each connected component of G

Note: In computer science, the kind of graph that is produced as the output of the last problem, above, is often called a *spanning forest* of *G*.

Note: Careful, though! In mathematics, the term "spanning forest" is sometimes used for a more general type of structure — so you need to check definitions in any references you use.

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #30	5 / 29	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #30	6 / 29
"Graph Search" Prob	Graph Search			"Graph Search:" Sp	Graph Search Decification of Requi	irements	

Graph Search — or *Graph Traversal* — refers to problems in which we wish to visit some, or all, of the vertices in a graph in a particular order.

Algorithms for graph search are important mainly because we need to use them to solve *other* (more interesting) problems.

In the version of a "graph search" problem to be given next the output will be a structure associated with a search — a *spanning tree* including the edges that have been followed in order to reach all the nodes that can be visited.

The primary application we will consider in these notes will be the discovery of a connected component of a graph; other applications are mentioned in suggested readings.

Precondition:

• G = (V, E) is an undirected graph and $s \in V$

Postcondition:

- The value returned is (a representation of) a function $\pi: V \rightarrow V \cup \{NIL\}$
- The predecessor subgraph $G_p = (V_p, E_p)$ corresponding to the vertex s and the function π is a spanning tree for the connected component of G that includes the vertex s
- The graph G has not been changed

Depth-First Search

Algorithm to search a graph in *depth-first* order:

• Given a graph G and a vertex s, the algorithm finds the *depth-first tree*, that is, a tree with root s whose edges are chosen by searching as deeply down a path as possible before "backtracking."

Applications include:

- finding the connected components of a graph
- solving puzzles (including some mazes) that have only one solution

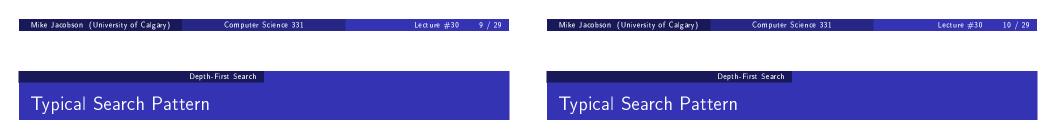
Problem and Idea to Overcome It

Problem: graphs can have *cycles* and we need to avoid following cycles (resulting in infinite loops)

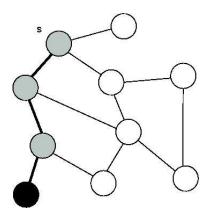
Solution: keep track of the nodes that have been visited already, so that we don't visit them again

Details:

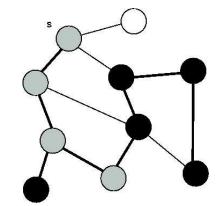
- initially all vertices are white
- carry out the following steps, beginning with node *s*.
 - Colour a node grey when a search from the node begins:
 - recursively search from each white neighbour (reachable by following an edge in the "forward" direction)
 - end the search by colouring the node black.



Pattern Near Beginning of Search:



Pattern Farther Along in Search:



Depth-First Search

Data and Pseudocode

The following information is maintained for each $u \in V$:

- *colour*[*u*]: Colour of *u*
- $\pi[u]$: Parent of *u* in tree being constructed

 $\mathsf{DFS}(G = (V, E), s)$

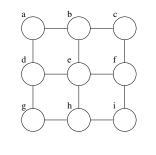
{Initialization — all nodes initially white (undiscovered)} for each vertex $u \in V$ do colour[u] = white $\pi[u] =$ NIL end for {Visit all vertices reachable from s} DFS-Visit(s) return π

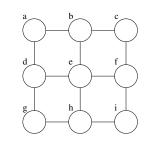
Pseudocode, Continued

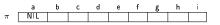
DFS-Visit(u)

colour[u] = greyfor each $v \in Adj[u]$ do if colour[v] == white then $\pi[v] = u$ DFS-Visit(v) end if end for colour[u] = black

Step 2

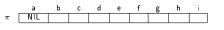






a b c d e f f g h i

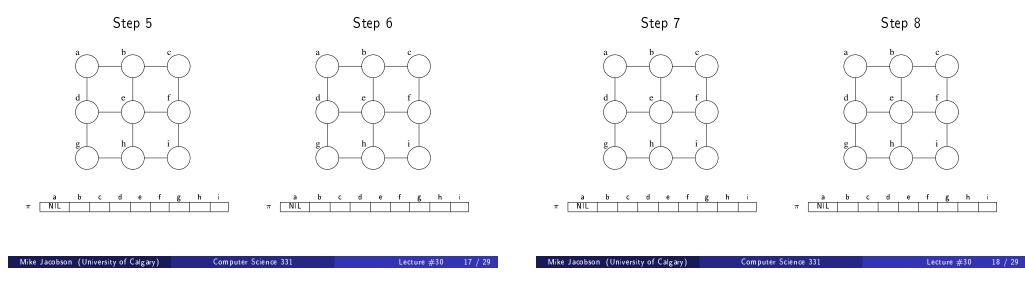
Step 3



d e f g h i h i

Example, continued

Example, continued

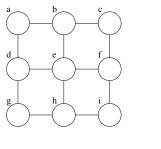


Depth-First Search Example
Example, continued

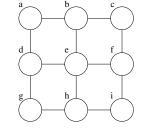
		Depth-First Search	Example
Evample	continued		
	Continueu		

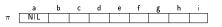
Step 9

Step 10



 π $\begin{bmatrix} a & b & c & d & e & f & g & h \\ \hline NIL & & & & & & & & & \\ \end{bmatrix}$





Step 11

 Step 12



Example, continued

Example, continued

Step 13	Step 14	Step 15	Step 16
a b c d e f d	a b c d e f d h i d b b b c c d	a b c d e f f h i h i	a b c d e f f f h i h i h
abcdefghi π NIL	abcdefghi π NIL	abcdefghi π NIL	abcdefghi π <mark>NIL </mark>
Mike Jacobson (University of Calgary) Computer S	cience 331 Lecture #30 21 / 29	Mike Jacobson (University of Calgary) Computer	- Science 331 Lecture #30 22 / 29
Depth-First Search Example, continued	Example	Depth-First Search Behaviour of DFS-Visit	Example
Step 17	Step 18	 Let u ∈ V. If DFS-Visit is ever called with i immediately before this function colourful = block on terminatio 	n is called with this input, and
		colour[u] = black on terminatio The following notation will be useful algorithm.	

- Consider the *colour* function just **before** DFS-Visit is called with input u. Let

 - $V_u = \{v \in V \mid colour[v] = white\},$ $G_u = (V_u, E_u)$ be the induced subgraph of G corresponding to the subset V_u .

abcdefg π NIL

h i

h i

Additional Useful Notation:

- Consider the function π immediately **after** this call to DFS-Visit terminates (if it terminates at all).
 - Let $\pi_{\mu}: V_{\mu} \to V_{\mu} \cup \{\text{NIL}\}$ such that, for a node $v \in V_{\mu}$,

$$\pi_u(v) = \begin{cases} \pi(v) & \text{if } v \neq u, \\ \text{NIL} & \text{if } v = u. \end{cases}$$

• Let $G_{p,u} = (V_{p,u}, E_{p,u})$ be the predecessor subgraph of G_u corresponding to the function π_u and the vertex u.

Behaviour of DFS-Visit

Theorem 1

Suppose that this execution of DFS-Visit terminates. Then

- $G_{p,u}$ is a depth-first tree for the graph G_u and the vertex u.
- The graph G has not been changed by this execution of DFS-Visit.
- If $v \in V_u$ then colour[v] = black if $v \in V_{p,u}$, and colour[v] = white otherwise
- If $v \in V$ but $v \notin V_u$ then neither colour[v] nor $\pi[v]$ have been changed by this execution of DFS-Visit.
- $\pi[u]$ has not been changed by this execution of DFS-Visit.

Method of proof.

Induction on $|V_{\mu}|$.

Mike Jacobson (University of Calgary)

Mike Jacobson (University of Calgary)

Lecture #30

Depth-First Search Example

Computer Science 331

Partial Correctness of DFS

Theorem 2

If DFS is executed with an input graph G and vertex $s \in G$ then either the post-condition of the "Search" problem is satisfied on termination (with the spanning tree corresponding to the output having been produced in a "depth-first" manner) or the algorithm does not terminate at all.

Method of Proof.

Notice that this follows by inspection of the code, using the result about DFS-Visit that has just been established.

Depth-First Search Example

Computer Science 331

Termination and Running Time

Theorem 3

Suppose G = (V, E) is a directed or undirected graph, and suppose DFS is run on G and a vertex $v \in S$. Then the algorithm terminates after O(|V| + |E|) operations.

Sketch of Proof.

- **DFS-Visit** is called exactly once for each $u \in V$
 - only called if a vertex is white
 - vertex u is coloured grey when **DFS-Visit**(u) is executed, and never coloured white again.
- Total cost of **DFS**-**Visit**, minus recursive calls, is linear in $1 + \deg u$

Computer Science 331

•
$$\sum_{u \in V} (\deg u + 1) = 2|E| + |V|$$

Thus, total running time is $\Theta(|V| + |E|)$.

Depth-First Search Iteration in Depth-First Order

Iteration in Depth-First Order

Some applications require that the vertices in a graph that are reachable from a vertex s be visited in a "depth-first" order.

One such ordering, called "discovery order" or "preordering," can be produced by modifying our algorithm as follows:

- Delete references to the array π (this is no longer needed)
- Visit a node as soon as it is coloured grey

The worst-case cost is in O(|V| + |E|) once again

Another useful ordering, called "finish order" or "postordering," is obtained by visiting each node when its colour is changed to black. The algorithm could also be changed to produce this ordering without significantly changing its worst-case running time.

Mike Jacobson (University of Calgary)

Computer Science 331

Lecture #30 29 / 29