
Computer Science 331
Computation of Minimum-Cost Paths | Dijkstra's Algorithm

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #32

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 1 / 32

Outline

1 Introduction

2 Algorithm
A New Problem for Priority Queues
Dijkstra's Algorithm to Find Min-Cost Paths

3 Example

4 Analysis

5 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 2 / 32

Introduction

Computation of Minimum Cost Paths

Presented Here:

Dijkstra's Algorithm: a generalization of breadth-�rst search to
weighed graphs

Rather than looking for paths with minimum length we will look for
paths with minimum cost, that is, minimum total weight

Application: �nding the best route from one place to another on a
map, when multiple routes are available (single-source shortest path
problem)

This is also an interesting application of priority queues

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 3 / 32

Introduction

De�nitions: Paths and Their Costs

Suppose now that G = (V ;E ) is a weighted graph.

Consider a path, that is, a sequence of edges

(u0; u1); (u1; u2); : : : ; (uk�2; uk�1); (uk�1; uk)

in E where k � 0: Recall that this is a path from u to v if u0 = u and
uk = v :

The cost of this path is de�ned to be

k�1X

i=0

w((ui ; ui+1)):

Note that if k = 0 then the path has length 0 and it also has cost 0
(because the above sum has no terms).

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 4 / 32



Introduction

Example

Consider the following graph G and the weights shown near the edges.

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

The following are paths from a to g with cost 6 :

a; c ; d ; e; g (consists of edges (a; c); (c ; d); (d ; e); (e; g))

a; c ; d ; f ; g (consists of edges (a; c); (c ; d); (d ; f ); (f ; g))

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 5 / 32

Introduction

Minimum Cost Paths

The path (u0; u1); (u1; u2); : : : ; (uk�1; uk) is a minimum-cost path from u

to v if

this is a path from u to v (as de�ned above), and

the cost of this path is less than or equal to the cost of any other

path from u to v (in this graph).

Note:

If some weights of edges are negative then minimum cost paths might
not exist (because there may be paths from u to v that include
negative-cost cycles, whose costs are smaller than any bound you
could choose)!

In this lecture we will consider a version of the problem where edges
weights are all nonnegative, in order to avoid this problem.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 6 / 32

Introduction

Speci�cation of Requirements

Inputs and Outputs

Inputs and outputs have the same names and types as for \Breadth
First Search" but somewhat di�erent meanings.

Pre-Condition

G = (V ;E ) is a weighted graph such that

w((u; v)) � 0

for every edge (u; v) 2 E

s 2 V

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 7 / 32

Introduction

Speci�cation of Requirements (cont.)

Post-Condition:

The predecessor graph Gp = (Vp;Ep) corresponding to the function �

and vertex s is a spanning tree for the connected component of G
that contains s:

For every vertex v 2 V , d [v ] is the cost of a minimum-cost path
from s to v in G : In particular, d [v ] = +1 if and only if v is not
reachable from s in G at all.

For every vertex v 2 V that is reachable from s, the path from s to v

in the predecessor graph Gp is a minimum-cost path from s to v in G .

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 8 / 32



Algorithm

Data Structures

The algorithm (to be presented next) will use a priority queue to store
information about costs of paths that have been found.

The priority queue will be a MinHeap: the entry with the smallest

priority will be at the top of the heap.

Each node in the priority queue will store a vertex in G and the cost

of a path to this vertex.

The cost will be used as the node's priority.

An array-based representation of the priority queue will be used.

A second array will be used to locate each entry of the priority queue for a
given vertex in constant time.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 9 / 32

Algorithm

Data Structures

Example:

(1,2)

(3,6) (4,3)

heap-size(A) = 3
0 1 2 3 4

A: (1; 2) (3; 6) (4; 3) ? ?

0 1 2 3 4
B: NIL 0 NIL 1 2

Explanation:

element (v ; c) in the priority
queue consists of vertex v and
cost c of a path from s to v

A contains an array
representation of the min-heap

B gives the index of a vertex in
the array representation of the
priority queue. Examples:

vertex 3 is in the priority
queue (at index B[3] = 1)
vertex 0 is not in the priority
queue (B[0] = NIL)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 10 / 32

Algorithm A New Problem for Priority Queues

A New Problem for Priority Queues

The \Decrease-Priority" Problem has inputs A, i and p and is de�ned as
follows.

Precondition 1:

a) A is a Min-Heap (representing a min-priority queue Q)

b) i is an integer such that 0 � i < heap � size(A)

c) p is a value of the same type as the priorities in A

d) The priority q of the value that is currently stored at location i of A is
greater than or equal to p

Postcondition 1:

a) A is now a Min-Heap storing a set in which the priority of the value
originally at location i has been decreased from q to p (and such the
set is otherwise unchanged)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 11 / 32

Algorithm A New Problem for Priority Queues

A New Problem for Priority Queues

Precondition 2:

a) (a), (b) and (c) are the same as for Precondition #1

b) The priority q of the value currently stored at location i is already less
than p

Postcondition 2:

a) A is not changed

b) A LargePriorityException is thrown

Precondition 3:

a) (a) is the same as for Precondition #1

b) i is an integer such that either i < 0or i� heap � size(A)

Postcondition 3:

a) A is not changed

b) A RangeException is thrown

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 12 / 32



Algorithm A New Problem for Priority Queues

Idea and Pseudocode

Idea: Move the modi�ed value up in the heap until it is place.

Notation: P(y) will denote the priority of a value y :

void Decrease-Priority (A,i,p)

if i < 0 or i � heapsize(A) then
throw RangeException

else if p > P(A[i ]) then
throw LargePriorityException

else

Change P(A[i ]) to p

j = i

while j > 0 and P(A[parent(j)]) > P(A[j ]) do
tmp = A[j ]; A[j ] = A[parent(j)]; A[parent(j)] = tmp

j = parent(j)
end while

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 13 / 32

Algorithm A New Problem for Priority Queues

Correctness and E�ciency

Properties of This Algorithm:

The given algorithm is correct.

If A stores a set with size n then the number of steps used by the
algorithm is in �(logn) in the worst case.

Details of the proof of correctness and the analysis of this algorithm will
be included in the tutorial exercise on this topic.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 14 / 32

Algorithm Dijkstra's Algorithm to Find Min-Cost Paths

Dijkstra's Algorithm: Pseudocode

MCP(G ; s)

for v 2 V do

colour [v ] = white
d [v ] = +1
�[v ] = NIL

end for

Initialize an empty priority queue Q

colour [s] = grey
d [s] = 0
add vertex s with priority 0 to Q

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 15 / 32

Algorithm Dijkstra's Algorithm to Find Min-Cost Paths

Pseudocode, Continued

while (Q is not empty) do
(u; c) = extract-min(Q) fNote: c = d [u]g
for each v 2 Adj [u] do
if (colour [v ] == white) then
d [v ] = c + w((u; v))
colour [v ] = grey; �[v ] = u

add vertex s with priority d [v ] to Q

else if (colour [v ] == grey) then
Update information about v (shown on next slide)

end if

end for

colour [u] = black
end while

return �, d

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 16 / 32



Algorithm Dijkstra's Algorithm to Find Min-Cost Paths

Pseudocode, Concluded

Updating Information About v

if (c + w((u; v)) < d [v ]) then
old = d [v ]
d [v ] = c + w((u; v))
�[v ] = u

Use Decrease-Priority to replace (v ; old)
on Q with (v ; d [v ])

end if

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 17 / 32

Example

Example

Consider the execution of MCP(G , a):

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 18 / 32

Example

Example (Step 1)

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 19 / 32

Example

Example (Step 2)

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 20 / 32



Example

Example (Step 3)

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 21 / 32

Example

Example (Step 4)

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 22 / 32

Example

Example (Step 5)

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 23 / 32

Example

Example (Step 6)

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 24 / 32



Example

Example (Step 7)

a

c

b

d

e

f

g

2

5

1

2

4

1

1 3

3 2

2 1

a b c d e f g
d

�

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 25 / 32

Analysis

Easily Established Properties

Each of the following is easily established by inspecting the code:
1 Colour Properties:

The initial colour of every node v 2 V is white.
The colour of a vertex can change from white to grey.
The colour of a vertex can change from grey to black.
No other changes in colour are possible.

2 Contents of Queue: The following properties are part of the loop
invariant for the while loop:

If (u; d) is an element of the queue then u 2 V , colour[u] = grey, and
d = d [u].
If a vertex v (and its cost) were included on the queue but have been
removed, then colour[v ] = black.
Vertices that have never been on the queue are white.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 26 / 32

Analysis

Additional Properties (Proofs Not Too Hard)

The following are also part of the loop invariant for the while loop.

3 All vertices that belong to the predecessor subgraph (for � and s) are
either grey or black.

4 All neighbours of any black vertex are either black or grey.

5 If the colour of a vertex v is black or grey then there exists a path

(u0; u1); (u1; u2); : : : ; (uk�1; uk)

from s to v in the predecessor subgraph with cost d [v ] such that
colour [ui ] = black for 1 � i � k � 1 (u1 = s; uk = v)

Furthermore, all paths from s to v in G with the above form (i.e., all
but the �nal vertex is black) have cost at least d [v ].

6 If colour [x ] = black and colour [y ] = grey then d [x ] � d [y ].

7 If colour [x ] = white then d [x ] = +1.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 27 / 32

Analysis

One Final Property

The next property is part of the loop invariant, as well.

8 Suppose that the colour of v is either grey or white. Then every

path from s to v in G must begin with a sequence of edges

(u0; u1); (u1; u2); : : : ; (uk�1; uk)

where k � 2, colour [ui ] = black for 1 � i � k � 1, and where
colour [uk ] = grey.

Indeed, this is a consequence of Property #4 (listed above).

Undoubtedly, some of these properties do not seem very interesting. They
are important because they help to establish the one that is given next.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 28 / 32



Analysis

Final Piece of the Loop Invariant

Here is the last piece of the loop invariant.
9 The following property is satis�ed by every vertex v such that

colour [v ] = black, and also by the vertex v such that (v ; d [v ]) is at
the top of the priority queue, if Q is nonempty:

The unique path from s to v in the predecessor subgraph for � and s is
a minimum-cost path from s to v in G , and the cost of this path
is d [v ].

The loop invariant consists of the pieces of it that have now been
identi�ed.

One can establish that this is a loop invariant by induction on the number
of executions of the loop body.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 29 / 32

Analysis

Application of the Loop Invariant

Notice that, if the loop terminates, then

The priority queue is empty.

Therefore there are no grey vertices left!

Therefore the only neighbours of black vertices are also black.

This can be used to show that no white vertex is reachable from s.

This, and various pieces of the loop invariant, can be used to
establish partial correctness of the algorithm.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 30 / 32

Analysis

Termination and Running Time

It follows by a modi�cation of the analysis of the breadth-�rst search
algorithm that

The total number of operations on the priority queue, and the total
number of operations that do not involve the priority queue, are each
in O(jV j+ jE j).

Since the size of the priority queue never exceeds jV j each operation on
the priority queue requires O(log jV j) steps.

Conclusion: This algorithm terminates (on inputs G = (V ;E ) and s 2 V )
after using O((jV j+ jE j) log jV j) steps.

O(jV j log jV j+ jE j) using a Fibonacci heap (amortized)

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 31 / 32

References

References

References:

Cormen Leiserson, Rivest and Stein, Introduction to Algorithms,
Second Edition

Chapter 24 includes more information about Dijkstra's Algorithm.
This also includes information about a slower algorithm (The
\Bellman-Ford algorithm") that solves this problem when edge weights
are allowed to be negative.
Chapter 25 includes quite di�erent algorithms to compute
minimum-cost paths (and their costs) for all pairs of vertices in a graph

Text, Section 13.5

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #32 32 / 32


	Introduction
	Algorithm
	A New Problem for Priority Queues
	Dijkstra's Algorithm to Find Min-Cost Paths

	Example
	Analysis
	References

