

Introduction

Computation of Min-Cost Spanning Trees

Motivation: Given a set of sites (represented by vertices of a graph), connect these all as cheaply as possible (using connections represented by the edges of a weighted graph).

Goals for Today:

- presentation of the definitions needed to formally define a problem motivated by the above
- presentation of an algorithm (Prim's Algorithm) for solving the problem

Reference:

- Introduction to Algorithms, Chapter 23
- Text, Section 13.6 (problem), 13.6.2 (Prim's Algorithm)

Min-Cost Spanning Trees

Costs of Spanning Trees in Weighted Graphs

Recall that if G = (V, E) is a connected, undirected graph, then a spanning tree of G is a subgraph $\widehat{G} = (\widehat{V}, \widehat{E})$ such that

- $\widehat{V} = V$ (so \widehat{G} includes all the vertices in G)
- \widehat{G} is a tree

Suppose now that G = (V, E) is a connected *weighted* graph with weight function $w : E \mapsto \mathbb{N}$, and that $G_1 = (V_1, E_1)$ is a spanning tree of G

The cost of G_1 , $w(G_1)$, is the sum of the weights of the edges in G_1 , that is,

$$w(G_1) = \sum_{e \in E_1} w(e).$$

Suppose G is a weighted graph with weights as shown below.

Example

The cost of the following spanning tree, $G_1 = (V_1, E_1)$, is 8.

Mike Jacobson (University of Calgary) Computer Science 331	Lecture #33 5 / 24	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #33 6	ō / 24
Min-Cost Spanning Trees		Min-C	ost Spanning Trees		
Example		Minimum-Cost Spar	nning Trees		

The cost of the following spanning tree, $G_2 = (V_2, E_2)$, is 16.

Suppose (G, w) is a weighted graph.

A subgraph G_1 of G is a *minimum-cost spanning tree* of (G, w) if the following properties are satisfied.

- G_1 is a spanning tree of G.
- 2 $w(G_1) \leq w(G_2)$ for every spanning tree G_2 of G.

Example: In the previous example, G_2 is clearly *not* a minimum-cost spanning tree, because G_1 is a spanning tree of G such that $w(G_2) > w(G_1)$.

• It can be shown that G_1 is a minimum-cost spanning tree of (G, w).

Existence of a Minimum-Cost Spanning Tree

Lemma 1

Let G be a weighted graph with weight function w If G is connected then G has a minimum-cost spanning tree (which is not necessarily unique).

Building a Minimum-Cost Spanning Tree

- To construct a minimum-cost spanning tree of G = (V, E):
- **1** Start with $\widehat{G} = (\widehat{V}, \widehat{E})$, where $\widehat{V} \subseteq V$ and $\widehat{E} = \emptyset$.
 - **Note:** \widehat{G} is a subgraph of some minimum-cost spanning tree of (G, w).
- 2 Repeatedly add vertices (if necessary) and edges ensuring that \widehat{G} is still a subgraph of a minimum-cost spanning tree as you do so.

Continue doing this until $\widehat{V} = V$ and $|\widehat{E}| = |V| - 1$ (so that \widehat{G} is a spanning tree of \widehat{G}).

Computer Science 331

Mike Jacobson (University of Calgary)

Lecture #33

Algorithm Problem and Algorithm

Specification of Requirements

Pre-Condition

• G = (V, E) is a **connected** graph with weight function w

Post-Condition:

- π is a function $\pi: V \to V \cup \{N|L\}$
- If $\widehat{E} = \{(\pi(v), v) \mid v \in V \text{ and } \pi(v) \neq \text{NIL}\}$

then (V, \widehat{E}) is a minimum-cost spanning tree for G

• The graph G = (V, E) and its weight function have not been changed

Additional Notes:

Mike Jacobson (University of Calgary

• This can be done in several different ways, and there are at least two different algorithms that use this approach to solve this problem.

Algorithm General Construction

Building a Minimum-Cost Spanning Tree

The algorithm to be presented here begins with $\hat{V} = \{s\}$ for some vertex $s \in V$, and makes sure that \widehat{G} is always a *tree*.

• As a result, this algorithm is structurally very similar to Dijkstra's Algorithm to compute minimum-cost paths (which we have already discussed in class).

Lecture #33

Algorithm Problem and Algorithm

Data Structures

The algorithm (to be presented next) will use a **priority queue** to store information about weights of edges that are being considered for inclusion

- The priority queue will be a *MinHeap*: the entry with the *smallest* priority will be at the top of the heap
- Each node in the priority queue will store a *vertex* in *G* and the *weight* of an edge incident to this vertex
- The *weight* will be used as the vertex's priority
- An array-based representation of the priority queue will be used

A second array will be used to locate each entry of the priority queue for a given node in constant time

Note: The data structures will, therefore, look very much like the data structures used by Dijkstra's algorithm.

Pseudocode

 $\mathsf{MST-Prim}(G, w, s)$ for $v \in V$ do

colour[v] = white $d[v] = +\infty$ $\pi[v] = NIL$ end for Initialize an empty priority queue Q colour[s] = grey d[s] = 0add s with priority 0 to Q

Mike Jacobson (University of Calgary) Computer Science 331	Lecture #33 13 / 24	Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #33 14 / 24
Algorithm Problem and Algorithm Problem and Algorithm		Pseudocode, Conclud	Algorithm Problem and Algorithm	n
while (Q is not empty) do $(u, c) = extract-min(Q)$ {Note: $c = d[u]$ } for each $v \in Adj[u]$ do if $(colour[v] == white)$ then d[v] = w((u, v)) $colour[v] = grey; \pi[v] = u$ add v with priority $d[v]$ to Q else if $(colour[v] == grey)$ then Update information about v (Shown on next sli end if end for colour[u] = black end while return π	de)	Updating Information All if $(w((u, v)) < d[v])$ th old = d[v] d[v] = w((u, v)) $\pi[v] = u$ Use Decrease-Prio in Q with $(v, d[v])$ end if	bout v en rity to replace (<i>v</i> , old)	

Example (Step 1)

Consider the execution of MST-Prim(G, a):

5

d

4

2.

e

3

f

b

с

а

Example

	а	b	с	d	е	f	g	
d]
								1
π								J

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #33 17 / 24
	Example	
Example (Step 2)		

d

 π

Example (Step 3)

b

с

5

d

4

2

e

3

f

1

g

Mike Jacobson (University of Calgary)

Lecture #33

18 / 24

g

Computer Science 331

Example

Example (Step 4)

	а	b	с	d	е	f	g	
d]
		1		1				,
π								ļ

Example (Step 5)

Mike Jacobson (University of Calgary)	Computer Science 331	Lecture #33 21 / 24
	Example	
Example (Step 6)		
• • • • •		

Example

Example (Step 7)

	а	b	С	d	е	f	g	
d								
								,
π								
			_					

