Computer Science 331
Computation of Minimum-Cost Spanning Trees - Prim's Algorithm

Mike Jacobson

Department of Computer Science
University of Calgary
Lecture \#33

Computation of Min-Cost Spanning Trees

Motivation: Given a set of sites (represented by vertices of a graph), connect these all as cheaply as possible (using connections represented by the edges of a weighted graph).

Goals for Today:

- presentation of the definitions needed to formally define a problem motivated by the above
- presentation of an algorithm (Prim's Algorithm) for solving the problem

Reference:

- Introduction to Algorithms, Chapter 23
- Text, Section 13.6 (problem), 13.6.2 (Prim's Algorithm)IntroductionMin-Cost Spanning TreesAlgorithm
- General Construction
- Problem and AlgorithmExample

Recall that if $G=(V, E)$ is a connected, undirected graph, then a spanning tree of G is a subgraph $\widehat{G}=(\widehat{V}, \widehat{E})$ such that

- $\widehat{V}=V$ (so \widehat{G} includes all the vertices in G)
- \widehat{G} is a tree

Suppose now that $G=(V, E)$ is a connected weighted graph with weight function $w: E \mapsto \mathbb{N}$, and that $G_{1}=\left(V_{1}, E_{1}\right)$ is a spanning tree of G

The cost of $G_{1}, w\left(G_{1}\right)$, is the sum of the weights of the edges in G_{1}, that is,

$$
w\left(G_{1}\right)=\sum_{e \in E_{1}} w(e) .
$$

Example

Example

Suppose G is a weighted graph with weights as shown below.

Example

The cost of the following spanning tree, $G_{2}=\left(V_{2}, E_{2}\right)$, is 16 .

The cost of the following spanning tree, $G_{1}=\left(V_{1}, E_{1}\right)$, is 8 .

Lemma 1

Let G be a weighted graph with weight function w If G is connected then G has a minimum-cost spanning tree (which is not necessarily unique).

Proof.

G has at least one spanning tree, because:
-
G only has a finite number of spanning trees, because:
-
Thus, there must exist a spanning tree of G whose cost is less than or equal to that of any other spanning tree.

Additional Notes:

- This can be done in several different ways, and there are at least two different algorithms that use this approach to solve this problem.
The algorithm to be presented here begins with $\widehat{V}=\{s\}$ for some vertex $s \in V$, and makes sure that \widehat{G} is always a tree.
- As a result, this algorithm is structurally very similar to Dijkstra's Algorithm to compute minimum-cost paths (which we have already discussed in class).

To construct a minimum-cost spanning tree of $G=(V, E)$:
(1) Start with $\widehat{G}=(\widehat{V}, \widehat{E})$, where $\widehat{V} \subseteq V$ and $\widehat{E}=\emptyset$.

Note: \widehat{G} is a subgraph of some minimum-cost spanning tree of (G, w).
(2) Repeatedly add vertices (if necessary) and edges - ensuring that \widehat{G} is still a subgraph of a minimum-cost spanning tree as you do so.
Continue doing this until $\widehat{V}=V$ and $|\widehat{E}|=|V|-1$ (so that \widehat{G} is a spanning tree of \widehat{G}).

Specification of Requirements

Pre-Condition

- $G=(V, E)$ is a connected graph with weight function w

Post-Condition:

- π is a function $\pi: V \rightarrow V \cup\{$ NIL $\}$
- If

$$
\widehat{E}=\{(\pi(v), v) \mid v \in V \text { and } \pi(v) \neq \mathrm{NIL}\}
$$

then (V, \widehat{E}) is a minimum-cost spanning tree for G

- The graph $G=(V, E)$ and its weight function have not been changed

The algorithm (to be presented next) will use a priority queue to store information about weights of edges that are being considered for inclusion

- The priority queue will be a MinHeap: the entry with the smallest priority will be at the top of the heap
- Each node in the priority queue will store a vertex in G and the weight of an edge incident to this vertex
- The weight will be used as the vertex's priority
- An array-based representation of the priority queue will be used

A second array will be used to locate each entry of the priority queue for a given node in constant time

Note: The data structures will, therefore, look very much like the data structures used by Dijkstra's algorithm.

Pseudocode, Continued

```
MST-Prim(G,w,s)
    for }v\inV\mathrm{ do
        colour[v] = white
        d[v] = +\infty
        \pi[v] = NIL
```

 end for
 Initialize an empty priority queue \(Q\)
 colour[s] = grey
 \(d[s]=0\)
 add \(s\) with priority 0 to \(Q\)
 while (Q is not empty) do
$(u, c)=\operatorname{extract}-\min (Q)\{$ Note: $c=d[u]\}$
for each $v \in \operatorname{Adj}[u]$ do
if (colour $[v]==$ white) then
$d[v]=w((u, v))$
colour $[v]=$ grey; $\pi[v]=u$
add v with priority $d[v]$ to Q
else if (colour $[v]==$ grey) then
Update information about v (Shown on next slide)
end if
end for
colour $[u]=$ black
end while
return π

Consider the execution of $\operatorname{MST}-\operatorname{Prim}(G, a)$:

π

Example (Step 2) Example
Example (Step 3) Example

π

