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Introduction

Computation of Min-Cost Spanning Trees

Motivation: Given a set of sites (represented by vertices of a graph),
connect these all as cheaply as possible (using connections represented by
the edges of a weighted graph).

Goals for Today:

presentation of the de�nitions needed to formally de�ne a problem
motivated by the above

presentation of an algorithm (Prim's Algorithm) for solving the
problem

Reference:

Introduction to Algorithms, Chapter 23

Text, Section 13.6 (problem), 13.6.2 (Prim's Algorithm)
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Min-Cost Spanning Trees

Costs of Spanning Trees in Weighted Graphs

Recall that if G = (V ;E ) is a connected, undirected graph, then a
spanning tree of G is a subgraph bG = (bV ; bE ) such that

bV = V (so bG includes all the vertices in G )

bG is a tree

Suppose now that G = (V ;E ) is a connected weighted graph with weight
function w : E 7! N; and that G1 = (V1;E1) is a spanning tree of G

The cost of G1, w(G1), is the sum of the weights of the edges in G1, that
is,

w(G1) =
X
e2E1

w(e):
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Min-Cost Spanning Trees

Example

Suppose G is a weighted graph with weights as shown below.
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Min-Cost Spanning Trees

Example

The cost of the following spanning tree, G1 = (V1;E1), is 8.
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Min-Cost Spanning Trees

Example

The cost of the following spanning tree, G2 = (V2;E2), is 16.
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Min-Cost Spanning Trees

Minimum-Cost Spanning Trees

Suppose (G ;w) is a weighted graph.

A subgraph G1 of G is a minimum-cost spanning tree of (G ;w) if the
following properties are satis�ed.

1 G1 is a spanning tree of G .

2 w(G1) � w(G2) for every spanning tree G2 of G .

Example: In the previous example, G2 is clearly not a minimum-cost
spanning tree, because G1 is a spanning tree of G such that
w(G2) > w(G1).

It can be shown that G1 is a minimum-cost spanning tree of (G ;w).
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Min-Cost Spanning Trees

Existence of a Minimum-Cost Spanning Tree

Lemma 1

Let G be a weighted graph with weight function w If G is connected then

G has a minimum-cost spanning tree (which is not necessarily unique).

Proof.

G has at least one spanning tree, because:

G only has a �nite number of spanning trees, because:

Thus, there must exist a spanning tree of G whose cost is less than or
equal to that of any other spanning tree.
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Algorithm General Construction

Building a Minimum-Cost Spanning Tree

To construct a minimum-cost spanning tree of G = (V ;E ):

1 Start with bG = (bV ; bE ), where bV � V and bE = ;.

Note: bG is a subgraph of some minimum-cost spanning tree of
(G ;w).

2 Repeatedly add vertices (if necessary) and edges | ensuring that bG is
still a subgraph of a minimum-cost spanning tree as you do so.

Continue doing this until bV = V and jbE j = jV j � 1 (so that bG is a
spanning tree of bG ).
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Algorithm General Construction

Building a Minimum-Cost Spanning Tree

Additional Notes:

This can be done in several di�erent ways, and there are at least two
di�erent algorithms that use this approach to solve this problem.

The algorithm to be presented here begins with bV = fsg for some
vertex s 2 V , and makes sure that bG is always a tree.

As a result, this algorithm is structurally very similar to Dijkstra's

Algorithm to compute minimum-cost paths (which we have already
discussed in class).
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Algorithm Problem and Algorithm

Speci�cation of Requirements

Pre-Condition

G = (V ;E ) is a connected graph with weight function w

Post-Condition:

� is a function � : V ! V [ fNILg

If bE = f(�(v); v) j v 2 V and �(v) 6= NILg

then (V ; bE ) is a minimum-cost spanning tree for G

The graph G = (V ;E ) and its weight function have not been changed
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Algorithm Problem and Algorithm

Data Structures

The algorithm (to be presented next) will use a priority queue to store
information about weights of edges that are being considered for inclusion

The priority queue will be a MinHeap: the entry with the smallest

priority will be at the top of the heap

Each node in the priority queue will store a vertex in G and the
weight of an edge incident to this vertex

The weight will be used as the vertex's priority

An array-based representation of the priority queue will be used

A second array will be used to locate each entry of the priority queue for a
given node in constant time

Note: The data structures will, therefore, look very much like the data
structures used by Dijkstra's algorithm.
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Algorithm Problem and Algorithm

Pseudocode

MST-Prim(G ; w ; s)

for v 2 V do

colour [v ] = white
d [v ] = +1
�[v ] = NIL

end for

Initialize an empty priority queue Q

colour [s] = grey
d [s] = 0
add s with priority 0 to Q
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Algorithm Problem and Algorithm

Pseudocode, Continued

while (Q is not empty) do
(u; c) = extract-min(Q) fNote: c = d [u]g
for each v 2 Adj [u] do
if (colour [v ] == white) then

d [v ] = w((u; v))
colour [v ] = grey; �[v ] = u

add v with priority d [v ] to Q

else if (colour [v ] == grey) then
Update information about v (Shown on next slide)

end if

end for

colour [u] = black
end while

return �
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Algorithm Problem and Algorithm

Pseudocode, Concluded

Updating Information About v

if (w((u; v)) < d [v ]) then
old = d [v ]
d [v ] = w((u; v))
�[v ] = u

Use Decrease-Priority to replace (v ; old)
in Q with (v ; d [v ])

end if
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Example

Example

Consider the execution of MST-Prim(G , a):
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Example

Example (Step 1)
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Example

Example (Step 2)
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Example

Example (Step 3)
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Example

Example (Step 4)
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Example

Example (Step 5)
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Example

Example (Step 6)
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Example

Example (Step 7)
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