
Computer Science 331

Other Graph Problems and Algorithms

Mike Jacobson

Department of Computer Science

University of Calgary

Lecture #35

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 1 / 14

Outline

1 Other Graph Problems

Introduction

Shortest Paths

Network Flow

2 Harder Problems

3 More About Data Structures and Algorithms

4 References

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 2 / 14

Other Graph Problems Introduction

Other Graph Problems

Numerous other graph problems have applications involving scheduling

and communication problems (among other things) and are therefore of

interest

Some of these | which you might see in other courses and which would

be studied in this course, if we had more time | are briey introduced in

these notes.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 3 / 14

Other Graph Problems Shortest Paths

Single-Source Shortest Paths

We have already seen that Dijkstra's algorithm can be used to �nd a

minimum-cost path from a given start vertex s to each vertex that is

reachable from s; in a connected, weighted graph, if costs of all edges are

greater than or equal to zero.

The problem is trickier if edge costs can be negative, because it is possible

that there are cycles with negative costs, so that minimum-cost paths do

not even exist!

The Bellman-Ford algorithm can be used to determine whether a given

graph includes a negative-cost cycle; if the graph does not, then this �nds

minimum-cost paths (even when some edge costs are less than zero); it is

slower than Dijkstra's algorithm when edge costs are all nonnegative.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 4 / 14

Other Graph Problems Shortest Paths

All Pairs Shortest Paths

Now suppose that the input is a weighted undirected graph G = (V ;E)
and we wish to �nd minimum-cost paths between every pair of vertices.

If all edge costs are greater than or equal to zero then it is su�cient

to visit each vertex s in turn run Dijkstra's algorithm with s as the

start vertex.

Another algorithm | the Floyd-Warshall Algorithm | can be used to

solve this problem if some edge-costs are negative. This is generally

faster than running the Bellman-Ford algorithm on every vertex.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 5 / 14

Other Graph Problems Network Flow

Flow Networks

Motivating Question: How much water can pass through a river system,

or through a network of pipes?

A ow network is a directed graph G = (V ;E) in which each edge (u; v)
has a nonnegative capacity (max. rate of ow)

c(u; v) � 0

We assume that c(u; v) = 0 if (u; v) =2 E .

Each ow network also has a designated pair of district vertices:

a source s 2 V (producing material)

a sink t 2 V (consuming material \owing" from the source)

Other vertices are \junctions" in the network.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 6 / 14

Other Graph Problems Network Flow

Flows

A ow in G is a real-valued function

f : V � V ! R

that satis�es the following three properties:

Capacity Constraint:

f (u; v) � c(u; v) for all u; v 2 V

Skew Symmetry:

f (u; v) = �f (v ; u) for all u; v 2 V

Conservation of Flow:

For all u 2 V n fs; tg;
X

v2V

f (u; v) = 0

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 7 / 14

Other Graph Problems Network Flow

Maximum Flows

The value jf j of a ow f is de�ned as

jf j =
X

f 2v

f (s; v)

where s is the source vertex for the ow graph (as above).

Maximum Flow Problem: Given a ow network, compute a ow for this

network with maximum value.

Several variations of the Ford-Fulkerson Method can be used to solve this

problem e�ciently.

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 8 / 14

Harder Problems

Harder Problems

A variety of other graph problems are not believed to have asymptotically

e�cient (deterministic, worst-case polynomial time) solutions at all.

Indeed, if P 6= NP then none of these do.

Important examples:

Traveling Salesman Problem

Input: A weighted, connected, undirected graph G = (V, E) and

the weights for its edges

Problem: Find a Hamiltonian cycle | that is, a simple cycle that

includes every vertex | whose cost is as small as possible

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 9 / 14

Harder Problems

Harder Problems

Maximum Clique

Input: An undirected graph G = (V, E)

Problem: Find a clique | a set of vertices V0 � V such each vertex

v 2 V0 is a neighbour of every other vertex w 2 V0 | whose size is as

large as possible.

Maximum Independent Set

Input: An undirected graph G = (V, E)

Problem: Find an independent set | a set of vertices V0 � V such

that no two vertices v;w 2 V0 are neighbours | whose size is as large

as possible

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 10 / 14

Harder Problems

Harder Problems

Graph Colouring:

Input: An undirected graph G = (V, E)

Problems: Find a colouring | a map from the set V of vertices to a

�nite set of colours, such that no vertices v and w are mapped to the

same colour if they are neighbours | that uses as few colours as

possible

A variety of scheduling problems | including the problem of scheduling

�nal exams so that students do not have time conicts | can be modelled

using this \Graph Colouring" problem

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 11 / 14

More About Data Structures and Algorithms

Continuations in Other Courses

The study of data structures and algorithms continues in other courses

CPSC 335: Information Structures II

Additional information about hash tables, search trees, sorting

algorithms, and data structures and algorithms for other problems

(including various computations on strings)

CPSC 461: Information Structures III

File structures, data structures and algorithms that can be used to

store and manipulate extremely large sets of data, notably including

data sets that are too large to be �t into main memory

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 12 / 14

More About Data Structures and Algorithms

Continuations in Other Courses

CPSC 413: Design and Analysis of Algorithms I. Includes

Algorithm Analysis, including methods to deal with complicated

expressions (including summations and recurrences) that you get

when bounding the running times of more complicated iterative and

recursive programs

Algorithm Design Techniques: We have now seen algorithms that

\Divide and Conquer," \Dynamic Programming," and \Greedy

Algorithms."

These are \algorithm design techniques." In CPSC 413 you learn (a

bit) about how to use these to design algorithms of your own.

Complexity Theory: Something that can, sometimes, be used to argue

that problems do not have any e�cient algorithms at all!

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 13 / 14

References

References:

Cormen, Leiserson, Rivest and Stein

Introduction to Algorithms (Second Edition)

This is available online and in the library; it includes descriptions of all

the algorithms mentioned in these notes, as well as chapters on the

CPSC 413-related material mentioned above

Wikipedia - while not always reliable, this seems to have quite a good

set of pages about graph algorithms, as well as more general topics

concerning algorithm design and analysis

Mike Jacobson (University of Calgary) Computer Science 331 Lecture #35 14 / 14

	Other Graph Problems
	Introduction
	Shortest Paths
	Network Flow

	Harder Problems
	More About Data Structures and Algorithms
	References

